В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ксю882
ксю882
27.12.2022 08:44 •  Химия

Объясните свойства твердых, жидких и газообразных веществ с позиции молекулярно-кинетической теории частиц. Свойство 1
Свойство 2
Свойство 3
Заранее благодарю


Объясните свойства твердых, жидких и газообразных веществ с позиции молекулярно-кинетической теории

Показать ответ
Ответ:
GLEBfy
GLEBfy
05.01.2021 16:36
6CO2+6H2O=C6H12O6+6O2-Q еакция фотосинтеза!
Молекулярная формула целлюлозы (-C6H10O5-)n, как и у крахмала. Целлюлоза тоже является природным полимером. Ее макромалекула состоит из многих остатков молекул глюкозы. Может воэникнуть вопрос: почему крахмал и целлюлоза – вещества с одинаковой молекулярной формулой – обладают различными свойствами?
При рассмотрении синтетических полимеров мы уже выяснили, что их свойства зависят от числа элементарных звеньев и их структуры. Это же положение относится и к природным полимерам. Оказывается, степень полимеризации у целлюлозы намного больше, чем у крахмала. Кроме того, сравнивая структуры этих природных полимеров, установили, что макромолекулы целлюлозы, в отличие от крахмала, состоят из остатков молекулы (-глюкозы и имеют только линейное строение. Макромолекулы целлюлозы располагаются в одном направлении и образуют волокна (лен, хлопок, конопля) .
В каждом остатке молекулы глюкозы содержатся три гидроксильные группы.
Физические свойства.
Целлюлоза – волокнистое вещество. Она не плавится и не переходит в парообразное состояние: при нагревании примерно до 350оС целлюлоза разлагается – обугливается. Целлюлоза нерастворима ни в воде, ни в большинстве других неорганических и органических растворителях.
Не целлюлозы растворяться в воде – неожиданное свойство для вещества, содержащего по три гидроксильные группы на каждые шесть атомов углерода. Хорошо известно, что полигидроксильные соединения легко растворяются в воде. Нерастворимость целлюлозы объясняется тем, что ее волокна представляют собой как бы «пучки» расположенных параллельно нитевидных молекул, связанных множеством водородных связей, которые образуются в результате взаимодействия гидроксильных групп. Внутрь подобного «пучка» растворитель проникнуть не может, а следовательно, не происходит и отрыва молекул друг от друга.
Растворителем целлюлозы является реактив Швейцера – раствор гидроксида меди (II) с аммиаком, с которым она одновременно и взаимодействует.
Концентрированные кислоты (серная, фосфорная) и концентрированный раствор хлорида цинка также растворяют целлюлозу, но при этом происходит ее частичный распад (гидролиз) , сопровождающийся уменьшением молекулярной массы.
Получение.
Образцом почти чистой целлюлозой является вата, полученная из очищенного хлопка. Основную массу целлюлозы выделяют из древесины, в которой она содержится вместе с другими веществами. Наиболее распространенным методом получения целлюлозы в нашей стране является так называемый сульфитный. По этому методу измельченную древесину в присутствии раствора гидросульфита кальция Ca(HSO3)2 или гидросульфита натрия NaHSO3 нагревают в автоклавах при давлении 0,5–0,6 МПа и температуре 150о С. При этом все другие вещества разрушаются, а целлюлоза выделяется в сравнительно чистом виде. Ее промывают водой, сушат и направляют на дальнейшую переработку, большей частью на производство бумаги.
Применение.
Целлюлоза используется человеком с очень древних времен. Сначала применяли древесину как горючий и строительный материал; затем хлопковые, льняные и другие волокна стали использовать как текстильное сырье. Первые промышленные химической переработки древесины возникли в связи с развитием бумажной промышленности.
Бумага – это тонкий слой волокон клетчатки, спрессованных и проклеенных для создания механической прочности, гладкой поверхности, для предотвращения растекания чернил. Первоначально для изготовления бумаги употребляли растительное сырье, из которого чисто механически можно было получить необходимые волокна, стебли риса (так называемая рисовая бумага) , хлопка, использовали также изношенные ткани. Однако по мере развития книгопечатания перечисленных источников сырья стало не хватать для удовлетворения растущей потребности бумаги. Особенно много бумаги расходуется для печатания газет, причем вопрос о качестве (белизне, прочности, долговечности) для газетной бумаги значения не имеет. Зная, ч
0,0(0 оценок)
Ответ:
Агентс
Агентс
15.11.2021 20:28

Газификация угля

Актуальность газификации угля

Уголь - самый насыщенный углеродом вид ископаемого топлива.

При сжигании угля на тепловых электростанциях (ТЭС) образуется в 2 раза больше СО2, чем в процессе сжигания природного газа.

В связи с декарбонизацией мировой экономики предполагается отказаться от использования угля в качестве энергоресурса из-за превышения допустимого уровня выбросов в атмосферу твердых углеродных частиц, окислов азота.

Газификации угля позволяет его использовать в переходный период декарбонизации и снижать выбросы в атмосферу.

Технология газификации угля

Реакция газификации угля является высокотемпературным процессом взаимодействия углерода из топлива с окислителями.

Этот процесс необходим для того, чтобы получить горючие газы (Н2, СО, СН4).

В зависимости от применяемого сырья и вида конверсии (водяным паром или нестехиометрическим количеством О2) соотношение компонентов в газовой смеси изменяется в широких пределах:

СН4 + Н2О : СО + 3Н2

СН4 + ½O2 : СО + 2Н2

-СН2-+ Н2О : СО + 2Н2

-СН2-+ ½O2 : СО + Н2

Окислители:

кислород (или обогащенный им воздух),

водяной пар,

диоксид углерода (СО2)

или комбинации перечисленных веществ.

Основные реакции при газификации угля - реакции неполного окисления углерода органической массы, гетерогенные превращения угля с образованием газообразных продуктов:

С + 1/2 O2 : СО,

С + СO2 : 2 СO2,

С + Н2О : СО + Н2

Первичные продукты газификации, например СО2, могут реагировать с углеродом угля.

Сопутствующие газификации угля продукты его термического разложения:

диоксид углерода,

вода,

водород,

продукты полукоксования (углеводороды), которые также могут взаимодействовать с раскаленным углеродом.

Скорость реакции газификации - соответствует техническим целям.

Температура - высокая, при которой образование высших углеводородов практически исключается.

Угольная сера - нежелательная примесь, переводится в сероводород и сероуглерод.

Состав и теплота сгорания полученного в результате газификации газа различны и зависят от его использования:

горючий газ (для технологического и энергетического сжигания) - наличие большего объема метана и отсутствие нежелательных продуктов полукоксования угля: масла, смолы, фенолы,

синтез-газ ( химсырье для производства метанола, аммиака, использование в процессе Фишера-Тропша для производства жидкого топлива) - определенное соотношения СО:Н2 и Н2*2, что достигается подбором условий техпроцесса и выбором состава газифицирующего агента( состав: кислород и водяной пар).

восстановительный газ (в металлургической промышленности) - для прямого восстановления железной руды и др..

Классификация газификации:

По состоянию топлива в газогенераторе:

газификация в неподвижном слое;

газификация в медленно опускающемся слое твердого топлива;

газификация в кипящем слое;

газификация в потоке пылевидного топлива.

На различии подвода тепла к реактору газификации - эндотермический процесс:

автотермический, необходимое для газификации тепло, получают путем сжигания части введенного топлива в присутствии кислородсодержащих газифицирующих агентов,

аллотермический, тепло подводится извне с твердого или газообразного теплоносителя.

По принципу организации потока. Мелкозернистый или пылевидный уголь газифицируют при подаче в одном направлении угля и газообразного газифицирующего агента.

Это техническое решение имеет ряд преимуществ по сравнению с процессами газификации в неподвижном слое:

- более низкую стоимость мелкозернистого топлива по сравнению с кусковым;

- возможность применения сырья любой степени газификации, прежде всего любой спекаемости;

- отсутствие побочных продуктов - смолы, масла, фенолов и др.

- если газификацию проводят при повышенном давлении, значение этих факторов еще более возрастает, так как производительность генератора увеличивается пропорционально давлению.

В настоящее время:

совершенствуются существующие технологии газификации под давлением,

разрабатываются принципиально новых технологических процессов под давлением,

разрабатываются технологии повышения реакционной температуры,

разрабатываются технологии без использования дорогостоящей кислородной установки.

Повышение давления:

позволяет увеличить производительность, что повышает концентрация газифицирующего агента.

влияет на равновесие в процессе газификации.

благоприятно отражается на габаритных размерах газогенератора и скрубберов,

дает экономию затрат на компрессию, так как производимый газ занимает больший объем, чем газифицирующий агент.

делает возможным применение физических очистки газа, которые неэффективны при атмосферном давлении, экономить стоимость чистящего агента, снижать его потребления .

Повышение реакционной температуры:

увеличивает производительность газификатора;

уменьшает удельный объем газификатора,

снижает выход смол или нежелательных углеводородов,

за счет смещения равновесия при высоких температурах выходит газ с более высоким восстановительным потенциалом вследствие низкого содержания СО2 и более глубокого разложения водяного пара.

0,0(0 оценок)
Популярные вопросы: Химия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота