Большинство промышленных полимеров — органические вещества, которые при температуре 500 °С воспламеняются и горят (при тепловом импульсе более 0,85 кДж/м2 сгорает все). Горение осуществляется в результате воспламенения и горения газообразных продуктов термоокислительного пиролиза и представляют собой непрерывный многостадийный процесс: 1) аккумуляция тепловой энергии от источника зажигания, 2) разложение полимера с выделением летучих продуктов пиролиза (в ряде случаев — рекомбинация твердых или жидких продуктов разложения в более устойчивые соединения — пиролизованные остатки, в том числе карбонизованные, кокс), 3) воспламенение газообразных веществ, 4) горение газообразных веществ и кокса. Суммарная скорость процесса горения определяется наиболее медленной из перечисленных стадий.
Полимеры по своему поведению при горении так же, как и при нагревании в средах с различной концентрацией кислорода, подразделяются на две группы: деструктирующиеся с разрывом связей основной цепи и образованием низкомолекулярных газообразных и жидких продуктов и коксующиеся. Образующиеся низкомолекулярные газообразные и жидкие продукты пиролиза могут быть горючими и негорючими.
Возгорание горючих газообразных продуктов пиролиза происходит при достижении нижнего концентрационного предела воспламенения. Во многих случаях наблюдается разрушение материала и вынос в газовую фазу твердых частиц с горящей поверхности полимера.
Горючесть полимерных материалов, в основном, зависит от соотношения теплоты, выделяемой при сгорании продуктов пиролиза, и теплоты, необходимой для их образования и газификации.
Для снижения горючести полимеров используют: 1) замедление реакций в зоне пиролиза снижением скорости газификации полимера и количества образующихся горючих продуктов; 2) снижение тепло- и массообмена между пламенем и конденсированной фазой; 3) ингибирование радикалоцепных процессов в конденсированной фазе при ее нагреве и в пламени. Практически указанные направления реализуются путем использования химически модифицированных полимеров, в том числе с минимальным содержанием водорода в структуре, термоустойчивых (типа полиариленов и полигетероариленов), путем введения в состав полимерного материала минеральных наполнителей, антипиренов, нанесение огнезащитных покрытий, а также комбинацией этих методов.
1) 4 в степени (1 - 2х) = 64 4 в степени (1 - 2х) = 4 в степени 3 1 - 2х = 3, как показатели равных степеней с одинаковыми основаниями - 2х = 3 - 1 -2х = 2 х = 2 : (-2) х = -1 ответ. - 1 2) (1/4) в степени 2х - 19 = 1/64 (1/4) в степени 2х - 9 = (1/4) в степени 3 2х - 9 = 3 2х = 3 + 9 2х = 12 х = 12 : 2 х = 6 ответ. 6 3) 16 в степени х - 9 = 1/2 (2 в степени 4) в степени х - 9 = 2 в степени (-1) 2 в степени 4(х - 9) = 2 в степени (-1) 4(х - 9) = -1 4х - 36 = -1 4х = -1 + 36 4х = 35 х = 35 : 4 х = 8,75 ответ. 8,75
Большинство промышленных полимеров — органические вещества, которые при температуре 500 °С воспламеняются и горят (при тепловом импульсе более 0,85 кДж/м2 сгорает все). Горение осуществляется в результате воспламенения и горения газообразных продуктов термоокислительного пиролиза и представляют собой непрерывный многостадийный процесс: 1) аккумуляция тепловой энергии от источника зажигания, 2) разложение полимера с выделением летучих продуктов пиролиза (в ряде случаев — рекомбинация твердых или жидких продуктов разложения в более устойчивые соединения — пиролизованные остатки, в том числе карбонизованные, кокс), 3) воспламенение газообразных веществ, 4) горение газообразных веществ и кокса. Суммарная скорость процесса горения определяется наиболее медленной из перечисленных стадий.
Полимеры по своему поведению при горении так же, как и при нагревании в средах с различной концентрацией кислорода, подразделяются на две группы: деструктирующиеся с разрывом связей основной цепи и образованием низкомолекулярных газообразных и жидких продуктов и коксующиеся. Образующиеся низкомолекулярные газообразные и жидкие продукты пиролиза могут быть горючими и негорючими.
Возгорание горючих газообразных продуктов пиролиза происходит при достижении нижнего концентрационного предела воспламенения. Во многих случаях наблюдается разрушение материала и вынос в газовую фазу твердых частиц с горящей поверхности полимера.
Горючесть полимерных материалов, в основном, зависит от соотношения теплоты, выделяемой при сгорании продуктов пиролиза, и теплоты, необходимой для их образования и газификации.
Для снижения горючести полимеров используют: 1) замедление реакций в зоне пиролиза снижением скорости газификации полимера и количества образующихся горючих продуктов; 2) снижение тепло- и массообмена между пламенем и конденсированной фазой; 3) ингибирование радикалоцепных процессов в конденсированной фазе при ее нагреве и в пламени. Практически указанные направления реализуются путем использования химически модифицированных полимеров, в том числе с минимальным содержанием водорода в структуре, термоустойчивых (типа полиариленов и полигетероариленов), путем введения в состав полимерного материала минеральных наполнителей, антипиренов, нанесение огнезащитных покрытий, а также комбинацией этих методов.