По образовывать соли в реакциях с соединениями других классов оксиды делят на солеобразующие и несолеобразующие (CO, SiO, NO, N2O). Солеобразующие оксиды, в свою очередь, классифицируют на основные, кислотные и амфотерные. Осно́вными называются оксиды, которым соответствуют основания, кислотными — оксиды, которым отвечают кислоты. К амфотерным относятся оксиды, проявляющие химические свойства как основных, так и кислотных оксидов.
Основные оксиды образуют только элементы металлы: щелочные (Li2O, Na2O, K2O, Cs2O, Rb2O), щелочноземельные (CaO, SrO, BaO, RaO) и магний (MgO), а также металлы d-семейства в степени окисления +1, +2, реже +3 (Cu2O, CuO, Ag2O, CrO, FeO, MnO, CoO, NiO, Sc2O3).
Кислотные оксиды образуют как элементы неметаллы (CO2, SO2, NO2, P2O5, Cl2O7), так и элементы металлы, причем в последнем случае степень окисления атома металла должна быть +5 и выше (V2O5, CrO3, Mn2O7, MnO3, Sb2O5, OsO4). Амфотерные оксиды образуют, как правило, элементы металлы (ZnO, Al2O3, Fe2O3, BeO, Cr2O3, PbO, SnO, MnO2).
Оксиды металлов в степени окисления +5 и выше являются кислотными и имеют молекулярное строение.
В обычных условиях оксиды могут находиться в трех агрегатных состояниях: все основные и амфотерные оксиды — твердые вещества, кислотные оксиды могут быть жидкими (SO3, Cl2O7, Mn2O7), газообразными (CO2, SO2, NO2) и твердыми (P2O5, SiO2). Некоторые имеют запах (NO2, SO2), однако большинство оксидов запаха не имеют. Одни оксиды окрашены: бурый NO2, вишнево-красный CrO3, черные CuO и Ag2O, красные Cu2O и HgO, коричневый Fe2O3, белые SiO2, Al2O3 и ZnO, другие — бесцветные (H2O, CO2, SO2). Большинство оксидов устойчивы при нагревании; легко разлагаются при нагревании оксиды ртути и серебра.
Основные и амфотерные оксиды имеют немолекулярное строение, для них характерна кристаллическая решетка ионного типа. Большинство кислотных оксидов — вещества молекулярного строения (одно из немногих исключений — оксид кремния(IV), имеющий атомную кристаллическую решетку). Примеры графических формул кислотных оксидов (для оксидов немолекулярного строения приводить графические формулы не рекомендуется):
Окисление фенола характеризуется сложным характером и происходит преимущественно по радикальному механизму. При этом в результате перехода электрона к окислителю возникает катион-радикал, который после отщепления протона превращается в феноксильний радикал Феноксил-радикал может легко образовываться также при окислении фенолят-аниона: Рисунок 4. В феноксильних радикалах неспаренный электрон в значительной степени делокализованных системой π-связей ароматического ядра, можно показать набором резонансных структур
Информация взята с сайта биржи Автор24: https://spravochnick.ru/himiya/poluchenie_fenolov/okislenie_fenolov/
Это механизм окисления, далее о окислении:
В общем случае, фенолы не устойчивы к окислению и в зависимости от природы окислителя и условий реакции дают различные соединения. Так, при действии CrO3 или хромовой смеси они превращаются в п-бензохиноны с образованием промежуточного гидрохинона: Рисунок 1. Именно появлением хиноидного строения (хромофорной системы связей) обусловлена окраска фенолов в процессе спонтанного окисления при хранении. Действием пероксида водорода в присутствии железа (вместо соединений хрома) получают пирокатехин
Объяснение:
По образовывать соли в реакциях с соединениями других классов оксиды делят на солеобразующие и несолеобразующие (CO, SiO, NO, N2O). Солеобразующие оксиды, в свою очередь, классифицируют на основные, кислотные и амфотерные. Осно́вными называются оксиды, которым соответствуют основания, кислотными — оксиды, которым отвечают кислоты. К амфотерным относятся оксиды, проявляющие химические свойства как основных, так и кислотных оксидов.
Основные оксиды образуют только элементы металлы: щелочные (Li2O, Na2O, K2O, Cs2O, Rb2O), щелочноземельные (CaO, SrO, BaO, RaO) и магний (MgO), а также металлы d-семейства в степени окисления +1, +2, реже +3 (Cu2O, CuO, Ag2O, CrO, FeO, MnO, CoO, NiO, Sc2O3).
Кислотные оксиды образуют как элементы неметаллы (CO2, SO2, NO2, P2O5, Cl2O7), так и элементы металлы, причем в последнем случае степень окисления атома металла должна быть +5 и выше (V2O5, CrO3, Mn2O7, MnO3, Sb2O5, OsO4). Амфотерные оксиды образуют, как правило, элементы металлы (ZnO, Al2O3, Fe2O3, BeO, Cr2O3, PbO, SnO, MnO2).
Оксиды металлов в степени окисления +5 и выше являются кислотными и имеют молекулярное строение.
В обычных условиях оксиды могут находиться в трех агрегатных состояниях: все основные и амфотерные оксиды — твердые вещества, кислотные оксиды могут быть жидкими (SO3, Cl2O7, Mn2O7), газообразными (CO2, SO2, NO2) и твердыми (P2O5, SiO2). Некоторые имеют запах (NO2, SO2), однако большинство оксидов запаха не имеют. Одни оксиды окрашены: бурый NO2, вишнево-красный CrO3, черные CuO и Ag2O, красные Cu2O и HgO, коричневый Fe2O3, белые SiO2, Al2O3 и ZnO, другие — бесцветные (H2O, CO2, SO2). Большинство оксидов устойчивы при нагревании; легко разлагаются при нагревании оксиды ртути и серебра.
Основные и амфотерные оксиды имеют немолекулярное строение, для них характерна кристаллическая решетка ионного типа. Большинство кислотных оксидов — вещества молекулярного строения (одно из немногих исключений — оксид кремния(IV), имеющий атомную кристаллическую решетку). Примеры графических формул кислотных оксидов (для оксидов немолекулярного строения приводить графические формулы не рекомендуется):
Окисление фенола характеризуется сложным характером и происходит преимущественно по радикальному механизму. При этом в результате перехода электрона к окислителю возникает катион-радикал, который после отщепления протона превращается в феноксильний радикал Феноксил-радикал может легко образовываться также при окислении фенолят-аниона: Рисунок 4. В феноксильних радикалах неспаренный электрон в значительной степени делокализованных системой π-связей ароматического ядра, можно показать набором резонансных структур
Информация взята с сайта биржи Автор24: https://spravochnick.ru/himiya/poluchenie_fenolov/okislenie_fenolov/
Это механизм окисления, далее о окислении:
В общем случае, фенолы не устойчивы к окислению и в зависимости от природы окислителя и условий реакции дают различные соединения. Так, при действии CrO3 или хромовой смеси они превращаются в п-бензохиноны с образованием промежуточного гидрохинона: Рисунок 1. Именно появлением хиноидного строения (хромофорной системы связей) обусловлена окраска фенолов в процессе спонтанного окисления при хранении. Действием пероксида водорода в присутствии железа (вместо соединений хрома) получают пирокатехин