Вообще то, это задача чисто математическая. Пусть есть трехзначное число abc. По условию:
abc + abc
bca Понятно, что максимальным число будет, если сложение в двух младших разрядах идет через перенос -> получим систему уравнений: 2c = a +16 2b +1 = c + 16 2a + 1 = b равносильная ей система 2с = a + 16 c = 2b - 15 b = 2a + 1 подставляем третье во второе, получаем первые два уравнения 2с = a + 16 c = 4a - 13 из этих двух уравнений -> 7a = 42 -> a = 6 -> из третьего уравнения b = 13 13 = D(16), из первого уравнения с = 22/2 = 11(10) = B(16) -> abc(16) = 6DB(16) = 1755(10), DB6(16) = 3510(10) -> 2abc = bca
1. В приведенном коде ошибка. Не хватает ";" в третьей строке снизу. 2. Немного изменим ваш код и получим искомое значение x Искомое число х = 16293
var x, y, a, b, k: integer;
begin k:=10000; repeat x:=k; a := 0; b := 0; y := 1; while x > 0 do begin if (x mod 10) mod 2 = 0 then a := a * 10 + x mod 10 else begin y := y * 10; b := b * 10 + x mod 10 end; x := x div 10 end; a := a * y + b; k := k + 1; until a = 26391; writeln(a:8, k-1:8); end.
По условию:
abc
+ abc
bca
Понятно, что максимальным число будет, если сложение в двух младших разрядах идет через перенос -> получим систему уравнений:
2c = a +16
2b +1 = c + 16
2a + 1 = b
равносильная ей система
2с = a + 16
c = 2b - 15
b = 2a + 1
подставляем третье во второе, получаем первые два уравнения
2с = a + 16
c = 4a - 13 из этих двух уравнений -> 7a = 42 -> a = 6 -> из третьего уравнения b = 13
13 = D(16), из первого уравнения с = 22/2 = 11(10) = B(16)
-> abc(16) = 6DB(16) = 1755(10), DB6(16) = 3510(10) -> 2abc = bca
2. Немного изменим ваш код и получим искомое значение x
Искомое число х = 16293
var
x, y, a, b, k: integer;
begin
k:=10000;
repeat
x:=k;
a := 0; b := 0; y := 1;
while x > 0 do
begin
if (x mod 10) mod 2 = 0
then
a := a * 10 + x mod 10
else begin
y := y * 10;
b := b * 10 + x mod 10
end;
x := x div 10
end;
a := a * y + b;
k := k + 1;
until a = 26391;
writeln(a:8, k-1:8);
end.