Я уже решал эту задачу. Я руками за 5 дней делаю 5 коробок, и на 6-ой день покупаю духовку. Руками и духовкой я делаю 2 коробки в день, за 5 дней - 10 коробок. На 6-ой день я покупаю вторую духовку. Руками и 2-мя духовками я за 5 дней делаю 15 коробок, и на 6-ой день покупаю 3-ью духовку. И так далее. Чтобы купить очередную духовку, я работаю 5 дней, а на 6-ой день ее покупаю, и у меня печенья не остается совсем. То есть, после покупки каждой духовки я начинаю всё с нуля. Главное - понять, когда нужно остановиться покупать духовки и начать уже копить печенье на складе. Итак, подведем итоги: 1) На покупку каждой духовки мы тратим 6 суток и начинаем с нуля. 2) Имея n духовок, мы делаем 584 коробок печенья за trunc(584/(n+1)) + 1 дней, где trunc(x) = [x] - это целая часть x. 3) Всего мы тратим времени T(n) = 6n + trunc(584/(n+1)) + 1 --> min Минимум функции trunc(584/(n+1)) совпадает с минимумом 584/(n+1) T(n) = 6n + 584/(n+1) + 1 --> min T'(n) = 6 - 584/(n+1)^2 = (6(n+1)^2 - 584) / (n+1)^2 = 0 6(n+1)^2 - 584 = 0 (n+1)^2 = 584/6 = 97,33 n + 1 = √97,33 ~ 9,86 = 10 n = 9 Значит, нужно ограничиться покупкой 9 духовок. За 6*9 = 54 дня мы их купим, и за 584/10 ~ 59 дней мы соберем нужное количество коробок на складе. Всего мы истратим 54 + 59 = 113 дней.
#include <iostream>
using namespace std;
int main()
{
int num;
cin >> num >> num;
int* ans = new int[num];
for (int jjj = 0; jjj < num; jjj++) cin>> ans[jjj];
for (int jjj = 1; jjj < num; jjj++) {
if (ans[jjj - 1] != ans[jjj] - 1) cout << ans[jjj - 1] << ",";
else {
cout << ans[jjj - 1];
int kkk = jjj;
for (kkk; kkk < num; kkk++)
if (ans[kkk - 1] != ans[kkk] - 1) break;
if (kkk - jjj > 1) cout << "-" << ans[kkk - 1];
else cout << "," << ans[kkk - 1];
jjj = kkk;
if (num - jjj) cout << ",";
}
if (num - jjj == 1) cout << ans[jjj];
}
}
Я руками за 5 дней делаю 5 коробок, и на 6-ой день покупаю духовку.
Руками и духовкой я делаю 2 коробки в день, за 5 дней - 10 коробок.
На 6-ой день я покупаю вторую духовку.
Руками и 2-мя духовками я за 5 дней делаю 15 коробок, и на 6-ой день покупаю 3-ью духовку.
И так далее. Чтобы купить очередную духовку, я работаю 5 дней, а на 6-ой день ее покупаю, и у меня печенья не остается совсем.
То есть, после покупки каждой духовки я начинаю всё с нуля.
Главное - понять, когда нужно остановиться покупать духовки и начать уже копить печенье на складе.
Итак, подведем итоги:
1) На покупку каждой духовки мы тратим 6 суток и начинаем с нуля.
2) Имея n духовок, мы делаем 584 коробок печенья за
trunc(584/(n+1)) + 1 дней, где trunc(x) = [x] - это целая часть x.
3) Всего мы тратим времени T(n) = 6n + trunc(584/(n+1)) + 1 --> min
Минимум функции trunc(584/(n+1)) совпадает с минимумом 584/(n+1)
T(n) = 6n + 584/(n+1) + 1 --> min
T'(n) = 6 - 584/(n+1)^2 = (6(n+1)^2 - 584) / (n+1)^2 = 0
6(n+1)^2 - 584 = 0
(n+1)^2 = 584/6 = 97,33
n + 1 = √97,33 ~ 9,86 = 10
n = 9
Значит, нужно ограничиться покупкой 9 духовок.
За 6*9 = 54 дня мы их купим, и за 584/10 ~ 59 дней мы соберем нужное количество коробок на складе.
Всего мы истратим 54 + 59 = 113 дней.