1. 2 Массивы объявляются тем же оператором, что и обычные переменные 2. Не корректный вопрос: индекс - это обращения к определенному элементу массива, а у самого массива индекса нет. В вариантах ответа ничего похожего на это нет. 3. 4 Массивы заполняются теми же операторами, что и обычные переменные 4. 1 Есть такой ввода в бейсике - конструкция READ DATA 5. 1 Выведется четвертый элемент массива, т.к. нумерация идет с нуля, и первый имеет номер 0, второй - 1, третий - 2, а четвертый - номер 3, который и запрашивается в выражении А(3)
Обозначим P,Q,A утверждение что х принадлежит соответствующему отрезку ¬А отрицание А, то есть х не принадлежит А перепишем и упростим исходную формулу P→((Q∧¬A)→P) известно что X→Y=¬X∨Y (доказывается просто, например через таблицу истинности) тогда: P→(¬(Q∧¬A)∨P) раскроем скобку ¬(Q∧¬A) с закона де Моргана (стыдно их не знать, если что это такие же основы как и таблицы истинности) P→(¬Q∨¬¬A∨P) = P→(¬Q∨A∨P) = ¬P∨¬Q∨A∨P ¬P∨P=1 то есть всегда истинно и 1∨Х=Х значит ¬P и P можно убрать остается ¬Q∨A Значит х либо принадлежит А либо не принадлежит Q для выполнения этого условия необходимо чтобы все значения Q принадлежали А, тогда минимальное А совпадает с Q ответ А=[40,77]
2. Не корректный вопрос: индекс - это обращения к определенному элементу массива, а у самого массива индекса нет. В вариантах ответа ничего похожего на это нет.
3. 4 Массивы заполняются теми же операторами, что и обычные переменные
4. 1 Есть такой ввода в бейсике - конструкция READ DATA
5. 1 Выведется четвертый элемент массива, т.к. нумерация идет с нуля, и первый имеет номер 0, второй - 1, третий - 2, а четвертый - номер 3, который и запрашивается в выражении А(3)
¬А отрицание А, то есть х не принадлежит А
перепишем и упростим исходную формулу
P→((Q∧¬A)→P)
известно что X→Y=¬X∨Y (доказывается просто, например через таблицу истинности)
тогда:
P→(¬(Q∧¬A)∨P)
раскроем скобку ¬(Q∧¬A) с закона де Моргана (стыдно их не знать, если что это такие же основы как и таблицы истинности)
P→(¬Q∨¬¬A∨P) = P→(¬Q∨A∨P) = ¬P∨¬Q∨A∨P
¬P∨P=1 то есть всегда истинно и 1∨Х=Х значит ¬P и P можно убрать
остается ¬Q∨A
Значит х либо принадлежит А либо не принадлежит Q
для выполнения этого условия необходимо чтобы все значения Q принадлежали А, тогда минимальное А совпадает с Q
ответ А=[40,77]