Составьте программу решения квадратного уравнения ax(2) + bx + c = 0. коэффициенты a, b, c введите с клавиатуры. выведите на экран значения корней x1, x2, если уравнение имеет два корня, значение x, если уравнение имеет один корень, или сообщение "нет корней", если уравнение не имеет корней на питоне
var x: integer; { введенное число } n: byte := 0; { количество цифр в числе } i, j: byte; { счетчики } xi: array[1..5] of integer;{массив цифр, из которых состоит число}
begin { Ввод исходного числа } readln(x); writeln; x := abs(x); // рассматриваем модуль числа { Разбиение числа на цифры } while (x > 0) do begin n := n + 1; // увеличиваем количество цифр xi[n] := x mod 10; // вычисляем цифру (остаток от деления на 10) if xi[n] = 8 then // если встретилась 8, begin writeln('да'); // то число "бесконечное" readln; exit; // выход из программы end; x := x div 10; // изменяем число (целое от деления на 10) end; { Поиск цифр, встречающихся больше одного раза} for i := 1 to n - 1 do for j := i + 1 to n do if xi[i] = xi[j] then // если числа begin writeln('да'); // то число "бесконечное" readln; exit; // выход из программы end; { Число не явлется "бесконечным" } writeln('нет');end.
Пусть ΔABC - равнобедренный, АВ = с - его основание, АС = ВС = b - боковые стороны. По условию треугольник симметричен относительно горизонтальной оси, так что его основание АВ должно быть перпендикулярно горизонтальной оси и при этом АО = ОВ, а вершина С попадет на горизонтальную ось. Разместим ΔABC так, чтобы основание попало на вертикальную ось.
Окружность, описанная вокруг треугольника, пройдет через все три его вершины. Точка М - центр описанной окружности, - лежит на пересечении перпендикуляров, проведенных из середин сторон треугольника. Поскольку ΔABC равнобедренный, то ОС - его высота и отрезок МС, равный радиусу окружности R, также лежит на горизонтальной оси.
Найдем высоту ОС, обозначив её через h, по теореме Пифагора.
ОС - это катет ΔAOC, AO ⊥ OC.
Площадь ΔABC находим по формуле
Для нахождения радиуса R = MC рассмотрим прямоугольные ΔAOC и ΔMDC, имеющие общий угол АСО = α
Теперь легко сделать необходимое построение.
Для этого откладываем от начала координат по горизонтальной оси отрезок ОМ и проводим из него, как из центра, окружность радиуса R. Соединяем между собой три точки пересечения окружностью осей координат и получаем треугольник с длинами сторон, равными заданным.
Ниже приводится программа на языке Microsoft QBasic, позволяющая рассчитать длину отрезка ОМ (Mx - координату х точки М) и радиус описанной окружности R по заданной длине основания с и длине боковой стороны b.
INPUT "Основание: ", c
INPUT "Боковая сторона: ", b
h = SQR(b ^ 2 - (c / 2) ^ 2)
R = b ^ 2 / (2 * h)
Mx = h - R
PRINT "Радиус равен "; R, "Координата центра равна "; Mx
Тестовое решение:
Y:\qbasic>QBASIC.EXE
Основание: 6
Боковая сторона: 5
Радиус равен 3.125 Координата центра равна .875
Чтобы продолжить, нажмите любую клавишу