Сканируется цветное изображение стандартного размера20×10см. разрещающая сканера 300×600dpi(точек на один дюйм) и глубина цвета 24 бита. какой информационный объем будет иметь полученный графический файл?
1) Один байт = 8 бит, максимальное число 2^8 - 1 = 255, если числа без знака. Для знаковых чисел старший бит отводится под знак числа, следовательно, минимальное число = - 2^7 - 1 = - 127, максимальное число = + 127 2) Число 1607, ячейка двухбайтовая, один бит под знак, следовательно, под число отводится 15 бит, в двоичном представлении 1607(10) = 11001000111(2), дополняем до 16 бит, старший бит - знаковый - нулевой, так как число положительное = 0000011001000111(2) - это двоичное представление в двухбайтовой ячейке, чтобы получить шестнадцатиричное представление, разбиваем число справа - налево по 4 бита 0000 0110 0100 0111 и записываем в шестнадцатиричном виде 0111(2) = 7(16) 0100(2) = 4(16) 0110(2) =6(16) 0000(2) = 0(16) 1607(16) = 0647(16) или без старшего не значащего нуля = 647(16) 3) для получения дополнительного кода числа, находят обратное число, или инверсию числа, для этого каждый бит числа изменяют на противоположный, 1 на 0, 0 на 1 105(10) = 1101001(2) - это и есть дополнительный код числа - 105, т.е. дополнительным кодом числа (- а) будет число а. Найдем дополнительный код в однобайтовой ячейке числа 105(10) = 01101001(2), а) находим обратное 01101001(2) ->(обратное) ->10010110(2) б) дополнительный код-> обратный код + 1 ->(дополнительный)->10010111(2), а это число - 105 потому, что отрицательные числа представляются в дополнительном коде. Если для числа - 105 найти дополнительный код, то получим число 105 10010111(2)->(дополнительный)->01101000+1->01101001 = 69(16) = 16*6+9 = 96+9 = 105
В двоичной системе: 1243(10)=2^10+2^7+2^6+2^4+2^3+2^1+1 = 1024+128+64+16+8+2+1 = 1243(10) =10011011011(2) В восьмиричной системе: разбиваете двоичное представление на группы по 3 бита справа налево 011 = 3 011 = 3 011 = 3 10 = 2 Тогда в восьмиричной системе: 2333(8) = 2*8^3+3*8^2+3*8^1+3 = 1024+192+24+3=1243(10) В шестнадцатиричной системе: разбиваете двоичное представление на группы по 4 бита справа налево 1011 = B = 11(10) 1101 = D(16) = 13(10) 100 = 4 Тогда в шестнадцатиричной системе 4DB(16) = 4*16^2+13*16^1+11 =1024+208+11=1243(10)
= - 127, максимальное число = + 127
2) Число 1607, ячейка двухбайтовая, один бит под знак, следовательно, под число отводится 15 бит, в двоичном представлении 1607(10) = 11001000111(2), дополняем до 16 бит, старший бит - знаковый - нулевой, так как число положительное
= 0000011001000111(2) - это двоичное представление в двухбайтовой ячейке, чтобы получить шестнадцатиричное представление, разбиваем число справа - налево по 4 бита
0000 0110 0100 0111 и записываем в шестнадцатиричном виде
0111(2) = 7(16) 0100(2) = 4(16) 0110(2) =6(16) 0000(2) = 0(16)
1607(16) = 0647(16) или без старшего не значащего нуля = 647(16)
3) для получения дополнительного кода числа, находят обратное число, или инверсию числа,
для этого каждый бит числа изменяют на противоположный, 1 на 0, 0 на 1
105(10) = 1101001(2) - это и есть дополнительный код числа - 105, т.е. дополнительным кодом
числа (- а) будет число а.
Найдем дополнительный код в однобайтовой ячейке числа 105(10) = 01101001(2),
а) находим обратное 01101001(2) ->(обратное) ->10010110(2)
б) дополнительный код-> обратный код + 1 ->(дополнительный)->10010111(2), а это число - 105
потому, что отрицательные числа представляются в дополнительном коде.
Если для числа - 105 найти дополнительный код, то получим число 105
10010111(2)->(дополнительный)->01101000+1->01101001 = 69(16) = 16*6+9 = 96+9 = 105
В восьмиричной системе: разбиваете двоичное представление на группы по 3 бита справа налево
011 = 3
011 = 3
011 = 3
10 = 2
Тогда в восьмиричной системе: 2333(8) = 2*8^3+3*8^2+3*8^1+3 = 1024+192+24+3=1243(10)
В шестнадцатиричной системе: разбиваете двоичное представление на группы по 4 бита справа налево
1011 = B = 11(10)
1101 = D(16) = 13(10)
100 = 4
Тогда в шестнадцатиричной системе
4DB(16) = 4*16^2+13*16^1+11 =1024+208+11=1243(10)