В шестеричной системе алфавит состоит из цифр 0,1,...5. Четырехразрядное число по условиям задания (1) и (2) имеет вид aabb, где a=1,2,...5, b=0,1,...5. В развернутой записи число имеет вид a×6³+a×6²+b×6+b×1 = 6²×a(6+1)+b(6+1) = 7(36a+b) При этом по условию (3) можно записать, что k² = 7(36a+b) Чтобы число 7(36a+b) было полным квадратом, 36a+b должно быть кратно 7, а остаток от деления (36a+b) на 7 также должен быть полным квадратом. Получаем, что 36a+b = 7m² Минимальное значение 36a+b равно 36×1+0 = 36, следовательно m>2 (при m=2 получим 7×4=28, что меньше 36). При m=3 получаем 36a+b = 63 и при a∈[1;5], b∉[0;5] решений нет. При m=4 получаем 36a+b = 112 и находим a=3, b=4 - есть решение! При m=5 получаем 36a+b = 175 и при a∈[1;5], b∉[0;5] решений нет. При m=6 получаем 36a+b = 175 и получаем, что a=7, а это недопустимо. Дальше смысла проверять нет. Итак, a=3, b=4, число 3344₆ = 7×(36×3+4) = 784₁₀ = 28²
#include <stdio.h>
#include <windows.h>
int main()
{
SetConsoleCP(1251);
SetConsoleOutputCP(1251);
int const n=3;
int mas[n][n];
int sum1, sum2;
bool magik;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
{
printf("mas[%d][%d] = ", i+1, j+1);
scanf("%d",&mas[ i ][ j ]);
}
printf("\nВведенная матрица:\n");
for (int i=0; i<n; i++)
{
for (int j=0; j<n; j++)
{
printf("%d ",mas[ i ][ j ]);
}
printf("\n");
}
sum1=0;
sum2=0;
for (int i = 0; i<n; i++)
{
sum1 += mas[ i ][ i ];
sum2 += mas[ i ][ n-1-i ];
}
printf("Сумма главной диагонали = %d\n", sum1);
printf("Сумма побочной диагонали = %d\n", sum2);
magik = true;
for (int i=0; i<n; i++)
{
if (sum1==sum2)
{
sum2=0;
for (int j=0; j<n; j++)
{
sum2 += mas[ i ][ j ];
}
} else { magik=false; break; }
}
if (magik==true)
{
for (int i=0; i<n; i++)
{
if (sum1==sum2)
{
sum2=0;
for (int j=0; j<n; j++)
{
sum2 += mas[ j ][ i ];
}
}
else { magik=false; break; }
}
}
if (magik==true)
printf("\nМатрица является магическим квадратом\n");
else
printf("\nМатрица не является магическим квадратом\n");
system("pause");
return 0;
}
Четырехразрядное число по условиям задания (1) и (2) имеет вид aabb,
где a=1,2,...5, b=0,1,...5.
В развернутой записи число имеет вид
a×6³+a×6²+b×6+b×1 = 6²×a(6+1)+b(6+1) = 7(36a+b)
При этом по условию (3) можно записать, что k² = 7(36a+b)
Чтобы число 7(36a+b) было полным квадратом, 36a+b должно быть кратно 7, а остаток от деления (36a+b) на 7 также должен быть полным квадратом.
Получаем, что 36a+b = 7m²
Минимальное значение 36a+b равно 36×1+0 = 36, следовательно m>2 (при m=2 получим 7×4=28, что меньше 36).
При m=3 получаем 36a+b = 63 и при a∈[1;5], b∉[0;5] решений нет.
При m=4 получаем 36a+b = 112 и находим a=3, b=4 - есть решение!
При m=5 получаем 36a+b = 175 и при a∈[1;5], b∉[0;5] решений нет.
При m=6 получаем 36a+b = 175 и получаем, что a=7, а это недопустимо. Дальше смысла проверять нет.
Итак, a=3, b=4, число 3344₆ = 7×(36×3+4) = 784₁₀ = 28²
ответ: 3344