решить задачки по с++,сама пыталась, но безуспешно.
1) Составить программу для вычисления суммы факториалов всех печатных чисел .Построить блок схему
2.)Составить программу для нахождения наибольшего общего деятеля четырёх натуральных чисел Построить блок схему.
3.)Заменить отрицательные элементы линейного массива их модулями ,не пользуясь стандартной функцией вычисления модуля. Подсчитать количество произведённых замен.
Построить блок схему.
public static void main(String args[]){
java.util.Scanner in = new java.util.Scanner(System.in);
String string = in.nextLine(); char chars[] = new char[4];
chars[0] = in.nextLine().charAt(0); chars[2] = in.nextLine().charAt(0);
for(int sChar = 0; sChar<string.length(); sChar++)
if(string.charAt(sChar)==chars[0])chars[1]++;
else if(string.charAt(sChar)==chars[2])chars[3]++;
System.out.print("\n"+(chars[1]==chars[3]?chars[0]+""+chars[2]:chars[1]>chars[3]?chars[0]:chars[2]));
}
}
= - 127, максимальное число = + 127
2) Число 1607, ячейка двухбайтовая, один бит под знак, следовательно, под число отводится 15 бит, в двоичном представлении 1607(10) = 11001000111(2), дополняем до 16 бит, старший бит - знаковый - нулевой, так как число положительное
= 0000011001000111(2) - это двоичное представление в двухбайтовой ячейке, чтобы получить шестнадцатиричное представление, разбиваем число справа - налево по 4 бита
0000 0110 0100 0111 и записываем в шестнадцатиричном виде
0111(2) = 7(16) 0100(2) = 4(16) 0110(2) =6(16) 0000(2) = 0(16)
1607(16) = 0647(16) или без старшего не значащего нуля = 647(16)
3) для получения дополнительного кода числа, находят обратное число, или инверсию числа,
для этого каждый бит числа изменяют на противоположный, 1 на 0, 0 на 1
105(10) = 1101001(2) - это и есть дополнительный код числа - 105, т.е. дополнительным кодом
числа (- а) будет число а.
Найдем дополнительный код в однобайтовой ячейке числа 105(10) = 01101001(2),
а) находим обратное 01101001(2) ->(обратное) ->10010110(2)
б) дополнительный код-> обратный код + 1 ->(дополнительный)->10010111(2), а это число - 105
потому, что отрицательные числа представляются в дополнительном коде.
Если для числа - 105 найти дополнительный код, то получим число 105
10010111(2)->(дополнительный)->01101000+1->01101001 = 69(16) = 16*6+9 = 96+9 = 105