Справа уже почти всё написано: задаётся случайный цвет, исполнитель делает 100 шагов вперед, 100 шагов назад и поворачивается на 1 градус. Поскольку полный оборот - 360 градусов, то это нужно повторить 360 раз.
Можно просто скопировать эти 4 блока кода 359 раз, и этим задача решится. Но так делать нерационально: долго и большая вероятность, что где-то будет допущена ошибка. Проще воспользоваться циклом в заданным числом повторений (повторить ??? раз).
То, что должно получиться, изображено на приложенной к ответу картинке.
По представления состояния системы различают: 1. Дискретные модели –– это автоматы, то есть реальные или воображаемые дискретные устройства с некоторым набором внутренних состояний, преобразующие входные сигналы в выходные в соответствии с заданными правилами. 2. Непрерывные модели –– это модели, в которых протекают непрерывные процессы. Например, использование аналоговой ЭВМ для решения дифференциального уравнения, моделирования радиоактивного распада с конденсатора, разряжающегося через резистор и т.д. По степени случайности моделируемого процесса выделяют (рис. 1): 1. Детерминированные модели, которым свойственно переходить из одного состояния в другое в соответствии с жестким алгоритмом, то есть между внутренним состоянием, входными и выходными сигналами имеется однозначное соответствий (модель светофора). 2. Стохастические модели, функционирующие подобно вероятностным автоматам; сигнал на выходе и состояние в следующий момент времени задается матрицей вероятностей. Например, вероятностная модель ученика, компьютерная модель передачи сообщений по каналу связи с шумом и т.д.
анализ и интерпретация результатов, их сопоставление с эмпирическими данными. Затем все это повторяется на следующем уровне.
Разработка компьютерной модели объекта представляет собой последовательность итераций: сначала на основе имеющейся информации о системе S строится модель , проводится серия вычислительных экспериментов, результаты анализируются. При получении новой информации об объекте S учитываются дополнительные факторы, получается модель , поведение которой тоже исследуется на ЭВМ. После этого создаются модели , и т.д. до тех пор, пока не получится модель, с требуемой точностью соответствующая системе S.
Справа уже почти всё написано: задаётся случайный цвет, исполнитель делает 100 шагов вперед, 100 шагов назад и поворачивается на 1 градус. Поскольку полный оборот - 360 градусов, то это нужно повторить 360 раз.
Можно просто скопировать эти 4 блока кода 359 раз, и этим задача решится. Но так делать нерационально: долго и большая вероятность, что где-то будет допущена ошибка. Проще воспользоваться циклом в заданным числом повторений (повторить ??? раз).
То, что должно получиться, изображено на приложенной к ответу картинке.
Объяснение:
По представления состояния системы различают: 1. Дискретные модели –– это автоматы, то есть реальные или воображаемые дискретные устройства с некоторым набором внутренних состояний, преобразующие входные сигналы в выходные в соответствии с заданными правилами. 2. Непрерывные модели –– это модели, в которых протекают непрерывные процессы. Например, использование аналоговой ЭВМ для решения дифференциального уравнения, моделирования радиоактивного распада с конденсатора, разряжающегося через резистор и т.д. По степени случайности моделируемого процесса выделяют (рис. 1): 1. Детерминированные модели, которым свойственно переходить из одного состояния в другое в соответствии с жестким алгоритмом, то есть между внутренним состоянием, входными и выходными сигналами имеется однозначное соответствий (модель светофора). 2. Стохастические модели, функционирующие подобно вероятностным автоматам; сигнал на выходе и состояние в следующий момент времени задается матрицей вероятностей. Например, вероятностная модель ученика, компьютерная модель передачи сообщений по каналу связи с шумом и т.д.
анализ и интерпретация результатов, их сопоставление с эмпирическими данными. Затем все это повторяется на следующем уровне.
Разработка компьютерной модели объекта представляет собой последовательность итераций: сначала на основе имеющейся информации о системе S строится модель , проводится серия вычислительных экспериментов, результаты анализируются. При получении новой информации об объекте S учитываются дополнительные факторы, получается модель , поведение которой тоже исследуется на ЭВМ. После этого создаются модели , и т.д. до тех пор, пока не получится модель, с требуемой точностью соответствующая системе S.