Почему программа считает только х-у а остальные нет //файл с функциями решения задачи
#include "stdafx.h"
//табулируемая функция двух переменных
float f(float x,float y)
{
float z;
if (x >= 2 && x = 1 && y 1 && x 0 && y =-10 && x 4 && x =-10 && y 5 && y Items->Clear(); //очистка списка
for (int i=1;i 0) {S+=z; Npoz++;}
// формируем строк для вывода в ListBox
if (j==1) //чтобы x выводился только один раз
fs=String::Format("x={0,-9:F2}y={1,10:F6}{2,4}z={3,10:F6}", x,y,probel,z);
else
{
String^ ss=String(' ',12).ToString(); // 12 пробелов
fs=String::Format("{0,-12}y={1,10:F6}{2,4}z={3,10:F6}",ss,y,probel,z);
}
// выводим строку в ListBox
Lb->Items->Add(fs);
y+=h2;
}
x+=h1;
}
return S;
}
var x: integer; { введенное число } n: byte := 0; { количество цифр в числе } i, j: byte; { счетчики } xi: array[1..5] of integer;{массив цифр, из которых состоит число}
begin { Ввод исходного числа } readln(x); writeln; x := abs(x); // рассматриваем модуль числа { Разбиение числа на цифры } while (x > 0) do begin n := n + 1; // увеличиваем количество цифр xi[n] := x mod 10; // вычисляем цифру (остаток от деления на 10) if xi[n] = 8 then // если встретилась 8, begin writeln('да'); // то число "бесконечное" readln; exit; // выход из программы end; x := x div 10; // изменяем число (целое от деления на 10) end; { Поиск цифр, встречающихся больше одного раза} for i := 1 to n - 1 do for j := i + 1 to n do if xi[i] = xi[j] then // если числа begin writeln('да'); // то число "бесконечное" readln; exit; // выход из программы end; { Число не явлется "бесконечным" } writeln('нет');end.
Пусть ΔABC - равнобедренный, АВ = с - его основание, АС = ВС = b - боковые стороны. По условию треугольник симметричен относительно горизонтальной оси, так что его основание АВ должно быть перпендикулярно горизонтальной оси и при этом АО = ОВ, а вершина С попадет на горизонтальную ось. Разместим ΔABC так, чтобы основание попало на вертикальную ось.
Окружность, описанная вокруг треугольника, пройдет через все три его вершины. Точка М - центр описанной окружности, - лежит на пересечении перпендикуляров, проведенных из середин сторон треугольника. Поскольку ΔABC равнобедренный, то ОС - его высота и отрезок МС, равный радиусу окружности R, также лежит на горизонтальной оси.
Найдем высоту ОС, обозначив её через h, по теореме Пифагора.
ОС - это катет ΔAOC, AO ⊥ OC.
Площадь ΔABC находим по формуле
Для нахождения радиуса R = MC рассмотрим прямоугольные ΔAOC и ΔMDC, имеющие общий угол АСО = α
Теперь легко сделать необходимое построение.
Для этого откладываем от начала координат по горизонтальной оси отрезок ОМ и проводим из него, как из центра, окружность радиуса R. Соединяем между собой три точки пересечения окружностью осей координат и получаем треугольник с длинами сторон, равными заданным.
Ниже приводится программа на языке Microsoft QBasic, позволяющая рассчитать длину отрезка ОМ (Mx - координату х точки М) и радиус описанной окружности R по заданной длине основания с и длине боковой стороны b.
INPUT "Основание: ", c
INPUT "Боковая сторона: ", b
h = SQR(b ^ 2 - (c / 2) ^ 2)
R = b ^ 2 / (2 * h)
Mx = h - R
PRINT "Радиус равен "; R, "Координата центра равна "; Mx
Тестовое решение:
Y:\qbasic>QBASIC.EXE
Основание: 6
Боковая сторона: 5
Радиус равен 3.125 Координата центра равна .875
Чтобы продолжить, нажмите любую клавишу