Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium, Unicode Inc.)[4][5]. Применение этого стандарта позволяет закодировать очень большое число символов из разных систем письменности: в документах, закодированных по стандарту Юникод, могут соседствовать китайские иероглифы, математические символы, буквы греческого алфавита, латиницы и кириллицы, символы музыкальной нотной нотации, при этом становится ненужным переключение кодовых страниц[6].
Стандарт состоит из двух основных частей: универсального набора символов (англ. Universal character set, UCS) и семейства кодировок (англ. Unicode transformation format, UTF). Универсальный набор символов перечисляет допустимые по стандарту Юникод символы и присваивает каждому символу код в виде неотрицательного целого числа, записываемого обычно в шестнадцатеричной форме с префиксом U+, например, U+040F. Семейство кодировок определяет преобразования кодов символов для передачи в потоке или в файле.
Коды в стандарте Юникод разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII, и коды этих символов совпадают с их кодами в ASCII. Далее расположены области символов других систем письменности, знаки пунктуации и технические символы. Часть кодов зарезервирована для использования в будущем[7]. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F (см. Кириллица в Юникоде)[8].
Анализ содержаний следовых количеств тяжелых металлов традиционными физико-химическими методами (атомная абсорбция, полярография, фотометрия и др.) требует предварительной пробоподготовки, т.к. металлы в большинстве объектов находятся в связанном состоянии. Они образуют достаточно прочные органические комплексы, мешающие точному и воспроизводимому определению их содержания. Поэтому перед любым анализом необходимо предварительно разрушить органическую составляющую пробы.
При подготовке проб к анализу методами ААС, ИСП-МС и ИСП-АЭС наибольшее развитие получило мокрое озоление проб различными кислотами при СВЧ-поля под давлением (СВЧ-минерализации под давлением).
Процесс минерализации проходит следующим образом: разлагаемая проба и окислительные реагенты помещаются в специальный сосуд из радиопрозрачного химически инертного материала (стекло, кварц, фторопласт), сосуд при необходимости герметично закрывается, переносится в микроволновую систему и реакционная смесь нагревается в СВЧ поле. При этом суммарное время пробоподготовки сокращается в десятки и сотни раз.
Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium, Unicode Inc.)[4][5]. Применение этого стандарта позволяет закодировать очень большое число символов из разных систем письменности: в документах, закодированных по стандарту Юникод, могут соседствовать китайские иероглифы, математические символы, буквы греческого алфавита, латиницы и кириллицы, символы музыкальной нотной нотации, при этом становится ненужным переключение кодовых страниц[6].
Стандарт состоит из двух основных частей: универсального набора символов (англ. Universal character set, UCS) и семейства кодировок (англ. Unicode transformation format, UTF). Универсальный набор символов перечисляет допустимые по стандарту Юникод символы и присваивает каждому символу код в виде неотрицательного целого числа, записываемого обычно в шестнадцатеричной форме с префиксом U+, например, U+040F. Семейство кодировок определяет преобразования кодов символов для передачи в потоке или в файле.
Коды в стандарте Юникод разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII, и коды этих символов совпадают с их кодами в ASCII. Далее расположены области символов других систем письменности, знаки пунктуации и технические символы. Часть кодов зарезервирована для использования в будущем[7]. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F (см. Кириллица в Юникоде)[8].
с инета
Объяснение:
Анализ содержаний следовых количеств тяжелых металлов традиционными физико-химическими методами (атомная абсорбция, полярография, фотометрия и др.) требует предварительной пробоподготовки, т.к. металлы в большинстве объектов находятся в связанном состоянии. Они образуют достаточно прочные органические комплексы, мешающие точному и воспроизводимому определению их содержания. Поэтому перед любым анализом необходимо предварительно разрушить органическую составляющую пробы.
При подготовке проб к анализу методами ААС, ИСП-МС и ИСП-АЭС наибольшее развитие получило мокрое озоление проб различными кислотами при СВЧ-поля под давлением (СВЧ-минерализации под давлением).
Процесс минерализации проходит следующим образом: разлагаемая проба и окислительные реагенты помещаются в специальный сосуд из радиопрозрачного химически инертного материала (стекло, кварц, фторопласт), сосуд при необходимости герметично закрывается, переносится в микроволновую систему и реакционная смесь нагревается в СВЧ поле. При этом суммарное время пробоподготовки сокращается в десятки и сотни раз.