Нужна ! по каналу связи сообщения, каждое из которых содержит 10 букв а, 5 букв б, 20 букв в и 5 букв г (других букв в сообщениях нет). каждую букву кодируют двоичной последовательностью. при выборе кода учитывались два требования: а) ни одно кодовое слово не является началом другого (это нужно, чтобы код допускал однозначное декодирование); б) общая длина закодированного сообщения должна быть как можно меньше. какой код из ниже следует выбрать для кодирования букв а, б, в и г? 1) а: 1, б: 01, в: 001, г: 111 2) а: 00, б: 01, в: 10, г: 11 3) а: 0, б: 10, в: 11, г: 111 4) а: 10, б: 111, в: 0, г: 110
1) ✔ префиксный
длина А: 1, длина Б: 2, длина В: 3, длина Г: 3
Длина сообщения: 10 * 1 + 5 * 2 + 20 * 3 + 5 * 3 = 10 + 10 + 60 + 15 = 95 бит
2) ✔ префиксный
длины кодовых слов: 2
Длина сообщения: (10 + 5 + 20 + 5) * 2 = 40 * 2 = 80 бит
3) ✘ не префиксный (11 - префикс 111)
4) ✔ префиксный
длина А: 2, длина Б: 3, длина В: 1, длина Г: 3
Длина сообщения: 10 * 2 + 5 * 3 + 20 * 1 + 5 * 3 = 20 + 15 + 20 + 15 = 70 бит
Наиболее оптимальный код 4).
Если бы нужно было бы найти какое-нибудь оптимальное префиксное кодирование, можно было бы построить код Хаффмана.
Выписываем частоты символов, а затем объединяем наименее часто встречающиеся символы, почлучая кодовое дерево.
А - 10, Б - 5, В - 20, Г - 5
А - 10, (БГ) - 10, В - 20
(А(БГ)) - 20, В - 20
(В(А(БГ)) - 40
Если в этой записи есть (XY), то к коду любой буквы из X приписываем слева 0, для любого символа из Y - 1. Начинаем с пустых кодов:
(БГ) -> Б: 0, Г: 1
(А(БГ)) -> А: 0, Б: 10, Г: 11
(В(А(БГ)) -> В: 0, А: 10, Б: 110, Г: 111.
Доказано, что такой код будет оптимальным.