Максимальное число, составленное из утроенного произведения цифр будет 9*3*N - не может быть больше 54, т.е. N может быть только 1 или 2. По условию х>=10 -> N=2 (N -порядок числа). Поэтому искать нужно среди чисел от 11 до 54. Решение - число 15.
var n,m: integer; begin write('n = '); readln(n); if n=2 then begin m:=11; repeat if (m mod 10)*(m div 10)*3=m then begin writeln('число: ',m); m:=55; end; m:=m+1; until m>54; end else writeln('нет решения'); end.
Приведём все степени к основанию 2
2^3702-2^468+2^1620-108
-108 можно представить как -128 + 16 + 4
2^3702-2^468+2^1620-2^7 + 2^4 + 2^2
Теперь выстраиваем степени в порядке убывания:
2^3702+2^1620-2^468-2^7 + 2^4 + 2^2
В выражении два вычитания подряд, избавимся от этого, заменив -2^468 на -2^469 + 2^468
2^3702+2^1620 -2^469+2^468-2^7 + 2^4 + 2^2
2^3702 - 1 единица
2^4 - 1 единица
2^2 - 1 единица
Количество единиц в вычитаниях будет равно разнице степеней. Например 1000000-100=1111
2^1620 -2^469 - количеств единиц 1620-469 = 1151
2^468-2^7 - количество единиц 468-7 = 461
Общее количество единиц равно 3+1151+461 = 1615
9*3*N - не может быть больше 54, т.е.
N может быть только 1 или 2. По условию х>=10 -> N=2 (N -порядок числа).
Поэтому искать нужно среди чисел от 11 до 54. Решение - число 15.
var n,m: integer;
begin
write('n = '); readln(n);
if n=2 then
begin m:=11;
repeat
if (m mod 10)*(m div 10)*3=m then
begin
writeln('число: ',m);
m:=55;
end;
m:=m+1;
until m>54;
end
else writeln('нет решения');
end.