Напишите программу, которая считывает с консоли числа (по одному в строке) до тех пор, пока сумма введённых чисел не будет равна 0 и сразу после этого выводит сумму квадратов всех считанных чисел. Гарантируется, что в какой-то момент сумма введённых чисел окажется равной 0, после этого считывание продолжать не нужно.
В примере мы считываем числа 1, -3, 5, -6, -10, 13; в этот момент замечаем, что сумма этих чисел равна нулю и выводим сумму их квадратов, не обращая внимания на то, что остались ещё не прочитанные значения.
Sample Input:
1
-3
5
-6
-10
13
4
-8
Sample Output:
340
1. + n 3 8 9 8
2 n 7 5 m
m 8 5 n 3
ясно, что основание искомой с/с > 10. Проверим и удостоверимся, что в 11c|c действия выполняются верно.
11 c|c M=6 n = 4
ответ: основание системы 11, m=6, n=4
2. m m 65 n
+2 n 4 4 m
5 5 4 2 4 очевидно, что основание искомой с/с > 6.
Проверим по действиям в 7 с/с, при сложении в столбик,
при m=3 и n=1
и удостоверимся, что всё верно.
ответ: осн. с\с = 7, m=3, n=1
3. пусть основание с\с будет X? тогда:
(4*X^2+X+5)*4 =2*X^3+2*X^2+6*X+6
раскрываем скобки, преобразуем и получаем уравнение:
(2*X - 14)*(X^2+1) = 0 ---> X=7
ответ:7
a) 10111010. n=8 => 8/3 - 3 8-ричных разряда
б) 1001111000111, n=13 => 13/3 - 5 8-ричных разрядов
в) A18C. Сначала найдем n. Посмотрим, сколько значащих разрядов у старшей цифры. A=1010 - 4 разряда. У остальных цифр по 4 разряда всегда. Поэтому n=3*4+4=16 => 16/3 - 6 8-ричных разрядов.
г) 1375BE.
1=1 : 1 разряд => n=5*4+1=21 => 21/3 - 7 8-ричных разрядов