В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
esayanmamikon1
esayanmamikon1
27.12.2020 22:04 •  Информатика

написать код решения задачи 1 в Fortran


написать код решения задачи 1 в Fortran

Показать ответ
Ответ:
гульназ85
гульназ85
03.09.2020 23:16

Экспоненциа́льная за́пись — представление действительных чисел в виде мантиссы и порядка. Удобна при представлении очень больших и очень малых чисел, а также для унификации их написания.

{\displaystyle N=M\cdot n^{p}} N=M\cdot n^{p}, где

N — записываемое число;

M — мантисса;

n — основание показательной функции;

p (целое) — порядок;

{\displaystyle n^{p}} n^{p} — характеристика числа.

Примеры:

1 000 000 (один миллион): {\displaystyle 1{,}0\cdot 10^{6}} 1{,}0\cdot 10^{6}; N = 1 000 000, M = 1,0, n = 10, p = 6.

1 201 000 (один миллион двести одна тысяча): {\displaystyle 1{,}201\cdot 10^{6}} 1{,}201\cdot 10^{6}; N = 1 201 000, M = 1,201, n = 10, p = 6.

−1 246 145 000 (минус один миллиард двести сорок шесть миллионов сто сорок пять тысяч): {\displaystyle -1{,}246145\cdot 10^{9}} -1{,}246145\cdot 10^{9}; N = −1 246 145 000, M = −1,246145, n = 10, p = 9.

0,000001 (одна миллионная): {\displaystyle 1{,}0\cdot 10^{-6}} 1{,}0\cdot 10^{{-6}}; N = 0,000001, M = 1,0, n = 10, p = −6.

0,000000231 (двести тридцать одна миллиардная): {\displaystyle 231\cdot 10^{-9}=2{,}31\cdot 100\cdot 10^{-9}=2{,}31\cdot 10^{2}\cdot 10^{-9}=2{,}31\cdot 10^{-9+2}=2{,}31\cdot 10^{-7}} 231\cdot 10^{{-9}}=2{,}31\cdot 100\cdot 10^{{-9}}=2{,}31\cdot 10^{2}\cdot 10^{{-9}}=2{,}31\cdot 10^{{-9+2}}=2{,}31\cdot 10^{{-7}}; N = 0,000000231, M = 2,31, n = 10, p = −7.

Объяснение: както так

0,0(0 оценок)
Ответ:
smit007agent
smit007agent
10.07.2022 19:54

ответ: [35;40]

Объяснение:

Логическое ИЛИ истинно, если истинно хотя бы одно утверждение.

Введем обозначения:

 

(x ∈А) ≡ A; (x ∈ P) ≡ P; (x ∈ Q) ≡ Q; (x ∈ R) ≡ R.

 

Применив преобразование импликации, получаем:

 

¬P∨Q∨¬A∨R

 

¬P∨Q∨R истинно тогда, когда x∈(– ∞,15);(25,∞). Выражение ¬A должно быть истинно на интервале [15;25]. Поскольку все выражение должно быть истинно для ЛЮБОГО x, следовательно, выражение A должно быть истинно на промежутке, не включающем отрезок [15;25].

 

Из всех отрезков только отрезок [35;40] удовлетворяет этому условию.

0,0(0 оценок)
Популярные вопросы: Информатика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота