Const n=8; var a:array[1..n,1..n] of integer; i,j,k,s,s1,si,dmin,smin:integer; begin Randomize; writeln('Исходный массив:'); for i:=1 to n do begin for j:=1 to n do begin a[i,j]:=random(50); write(a[i,j]:4); end; writeln; end; write('k = '); readln(k); s:=0; for j:=1 to n do s:=s+a[k,j]; writeln('s = ',s); dmin:=999999; smin:=999999; for i:=1 to n do if i<>k then begin s1:=0; for j:=1 to n do s1:=s1+a[i,j]; writeln('s',i,' = ',s1); if abs(s1-s)<dmin then begin dmin:=abs(s1-s); smin:=s1; si:=i; end; end; writeln('Номер строки = ',si,', smin = ',smin); end.
Рассмотрим следующую задачу. В обороте находятся банкноты k различных номиналов: a1, a2, ..., ak рублей. Банкомат должен выдать сумму в N рублей при минимального количества банкнот или сообщить, что запрашиваемую сумму выдать нельзя. Будем считать, что запасы банкнот каждого номинала неограничены.
Рассмотрим такой алгоритм: будем выдавать банкноты наибольшего номинала, пока это возможно, затем переходим к следующему номиналу. Например, если имеются банкноты в 10, 50, 100, 500, 1000 рублей, то при N = 740 рублей такой алгоритм выдаст банкноты в 500, 100, 100, 10, 10, 10, 10 рублей. Подобные алгоритмы называют «жадными», поскольку каждый раз при принятии решения выбирается тот вариант, который кажется наилучшим в данной ситуации (чтобы использовать наименьшее число банкнот каждый раз выбирается наибольшая из возможных банкнот).
Но для решения данной задачи в общем случае жадный алгоритм оказывается неприменимым. Например, если есть банкноты номиналом в 10, 60 и 100 рублей, то при N = 120 жадный алгоритм выдаст три банкноты: 100 + 10 + 10, хотя есть использующий две банкноты: 60 + 60. А если номиналов банкнот только два: 60 и 100 рублей, то жадный алгоритм вообще не сможет найти решения.
Но эту задачу можно решить при метода динамического программирования. Пусть F(n) -- минимальное количество банкнот, которым можно заплатить сумму в n рублей. Очевидно, что F(0) = 0, F(a1) = F(a2) =...= F(ak) = 1. Если некоторую сумму n невозможно выдать, будем считать, что F(n) = $ \infty$ (бесконечность).
Выведем рекуррентную формулу для F(n), считая, что значения F(0), F(1), ..., F(n - 1) уже вычислены. Как можно выдать сумму n? Мы можем выдать сумму n - a1, а потом добавить одну банкноту номиналом a1. Тогда нам понадобится F(n - a1) + 1 банкнота. Можем выдать сумму n - a2 и добавить одну банкноту номиналом a2, для такого понадобится F(n - a2) + 1 банкнота и т. д. Из всевозможных выберем наилучший, то есть:
Теперь заведем массив F[n+1], который будем последовательно заполнять значениями выписанного рекуррентного соотношения. Будем предполагать, что количество номиналов банкнот хранится в переменной int k, а сами номиналы хранятся в массиве int a[k].
const int INF=1000000000; // Значение константы }бесконечность}
int F[n+1];
F[0]=0;
int m, i;
for(m=1; m<=n; ++m) // заполняем массив F
{ // m - сумма, которую нужно выдать
F[m]=INF; // помечаем, что сумму m выдать нельзя
for(i=0; i<k; ++i) // перебираем все номиналы банкнот
{
if(m>=a[i] && F[m-a[i]]+1<F[m])
F[m] = F[m-a[i]]+1; // изменяем значение F[m], если нашли
} // лучший выдать сумму m
}
После окончания этого алгоритма в элементе F[n] будет храниться минимальное количество банкнот, необходимых, чтобы выдать сумму n. Как теперь вывести представление суммы n при банкнот? Опять рассмотрим все номиналы банкнот и значения n - a1, n - a2, ..., n - ak. Если для какого-то i окажется, что F(n - ai) = F(n) - 1, значит, мы можем выдать банкноту в ai рублей и после этого свести задачу к выдаче суммы n - ai, и так будем продолжать этот процесс, пока величина выдаваемой суммы не станет равна 0:
var
a:array[1..n,1..n] of integer;
i,j,k,s,s1,si,dmin,smin:integer;
begin
Randomize;
writeln('Исходный массив:');
for i:=1 to n do
begin
for j:=1 to n do
begin
a[i,j]:=random(50);
write(a[i,j]:4);
end;
writeln;
end;
write('k = '); readln(k);
s:=0;
for j:=1 to n do s:=s+a[k,j];
writeln('s = ',s);
dmin:=999999; smin:=999999;
for i:=1 to n do
if i<>k then
begin
s1:=0;
for j:=1 to n do s1:=s1+a[i,j];
writeln('s',i,' = ',s1);
if abs(s1-s)<dmin then begin dmin:=abs(s1-s); smin:=s1; si:=i; end;
end;
writeln('Номер строки = ',si,', smin = ',smin);
end.
Пример:
Исходный массив:
9 0 22 40 20 35 2 25
23 30 22 35 41 0 9 40
1 15 6 18 43 47 34 33
26 5 2 45 13 46 40 2
26 39 7 31 3 43 20 8
25 15 24 6 10 16 3 25
47 0 27 35 14 15 36 11
16 38 14 14 33 7 11 26
k = 5
s = 177
s1 = 153
s2 = 200
s3 = 197
s4 = 179
s6 = 124
s7 = 185
s8 = 159
Номер строки = 4, smin = 179
Рассмотрим следующую задачу. В обороте находятся банкноты k различных номиналов: a1, a2, ..., ak рублей. Банкомат должен выдать сумму в N рублей при минимального количества банкнот или сообщить, что запрашиваемую сумму выдать нельзя. Будем считать, что запасы банкнот каждого номинала неограничены.
Рассмотрим такой алгоритм: будем выдавать банкноты наибольшего номинала, пока это возможно, затем переходим к следующему номиналу. Например, если имеются банкноты в 10, 50, 100, 500, 1000 рублей, то при N = 740 рублей такой алгоритм выдаст банкноты в 500, 100, 100, 10, 10, 10, 10 рублей. Подобные алгоритмы называют «жадными», поскольку каждый раз при принятии решения выбирается тот вариант, который кажется наилучшим в данной ситуации (чтобы использовать наименьшее число банкнот каждый раз выбирается наибольшая из возможных банкнот).
Но для решения данной задачи в общем случае жадный алгоритм оказывается неприменимым. Например, если есть банкноты номиналом в 10, 60 и 100 рублей, то при N = 120 жадный алгоритм выдаст три банкноты: 100 + 10 + 10, хотя есть использующий две банкноты: 60 + 60. А если номиналов банкнот только два: 60 и 100 рублей, то жадный алгоритм вообще не сможет найти решения.
Но эту задачу можно решить при метода динамического программирования. Пусть F(n) -- минимальное количество банкнот, которым можно заплатить сумму в n рублей. Очевидно, что F(0) = 0, F(a1) = F(a2) =...= F(ak) = 1. Если некоторую сумму n невозможно выдать, будем считать, что F(n) = $ \infty$ (бесконечность).
Выведем рекуррентную формулу для F(n), считая, что значения F(0), F(1), ..., F(n - 1) уже вычислены. Как можно выдать сумму n? Мы можем выдать сумму n - a1, а потом добавить одну банкноту номиналом a1. Тогда нам понадобится F(n - a1) + 1 банкнота. Можем выдать сумму n - a2 и добавить одну банкноту номиналом a2, для такого понадобится F(n - a2) + 1 банкнота и т. д. Из всевозможных выберем наилучший, то есть:
F(n) = min(F(n - a1), F(n - a2),..., F(n - ak)) + 1.
Теперь заведем массив F[n+1], который будем последовательно заполнять значениями выписанного рекуррентного соотношения. Будем предполагать, что количество номиналов банкнот хранится в переменной int k, а сами номиналы хранятся в массиве int a[k].
const int INF=1000000000; // Значение константы }бесконечность}
int F[n+1];
F[0]=0;
int m, i;
for(m=1; m<=n; ++m) // заполняем массив F
{ // m - сумма, которую нужно выдать
F[m]=INF; // помечаем, что сумму m выдать нельзя
for(i=0; i<k; ++i) // перебираем все номиналы банкнот
{
if(m>=a[i] && F[m-a[i]]+1<F[m])
F[m] = F[m-a[i]]+1; // изменяем значение F[m], если нашли
} // лучший выдать сумму m
}
После окончания этого алгоритма в элементе F[n] будет храниться минимальное количество банкнот, необходимых, чтобы выдать сумму n. Как теперь вывести представление суммы n при банкнот? Опять рассмотрим все номиналы банкнот и значения n - a1, n - a2, ..., n - ak. Если для какого-то i окажется, что F(n - ai) = F(n) - 1, значит, мы можем выдать банкноту в ai рублей и после этого свести задачу к выдаче суммы n - ai, и так будем продолжать этот процесс, пока величина выдаваемой суммы не станет равна 0:
if (F[n]==INF)
cout<<"Требуемую сумму выдать невозможно"<<endl;
else
while(n>0)
for(i=0;i<k;++i)
if (F[n-a[i]]==F[n]-1)
{
cout<<a[i]<<" ";
n-=a[i];
break;
}
не удаляйте это