Четырехзначное число в расширенной записи имеет вид
Известно, что первая и последняя цифры одинаковы, отсюда d=a. Сумма цифр числа равна 16, т.е. 2a+b+c=16 (1) Если число делится на 2, то оно четное, следовательно "a" может равняться 2, 4, 6, 8. (2) Нулю оно равняться не может, поскольку тогда число станет трехзначным. Если четырехзначное число делится на 11, то модуль разности между суммами цифр, стоящих на четных и нечетных местах должна делиться на 11, т.е. |(a+c)-(a+b)|= |(c-b| делится на 11. Но разность двух однозначных чисел не может превышать 9, поэтому если она делится на 11, то она должна быть равна нулю. Но тогда с=b и число имеет вид 1000a+100b+10b+a. А уравнение (1) будет выглядеть как 2a+b+b=16; 2a+2b=16; b=8-a (3) C учетом (2) можно из (3) получить 4 решения: a=2, b=6 a=4, b=4 a=6, b=2 a=8, b=0 И это породит 4 возможных кода: 2662, 4444, 6226, 8008.
#include <iostream>
int gg(int k, int p, double m)
{
p = (k >= p) ? p : p / k;
return (m * 2 * p);
}
int main()
{
int k, p;
double m;
std::cout << "Сколько котлет можно одновременно положить на сковороду ? ";
std::cin >> k;
std::cout << "Сколько минут жарится одна сторона котлеты ? ";
std::cin >> m;
std::cout << "Сколько котлет вы будете жарить ? ";
std::cin >> p;
std::cout << p << " котлет пожарятся с двух сторон минимум за " << gg(k, p, m) << " минут";
}
Известно, что первая и последняя цифры одинаковы, отсюда d=a.
Сумма цифр числа равна 16, т.е. 2a+b+c=16 (1)
Если число делится на 2, то оно четное, следовательно "a" может равняться
2, 4, 6, 8. (2)
Нулю оно равняться не может, поскольку тогда число станет трехзначным.
Если четырехзначное число делится на 11, то модуль разности между суммами цифр, стоящих на четных и нечетных местах должна делиться на 11, т.е. |(a+c)-(a+b)|= |(c-b| делится на 11. Но разность двух однозначных чисел не может превышать 9, поэтому если она делится на 11, то она должна быть равна нулю. Но тогда с=b и число имеет вид
1000a+100b+10b+a.
А уравнение (1) будет выглядеть как
2a+b+b=16; 2a+2b=16; b=8-a (3)
C учетом (2) можно из (3) получить 4 решения:
a=2, b=6
a=4, b=4
a=6, b=2
a=8, b=0
И это породит 4 возможных кода: 2662, 4444, 6226, 8008.