Import pygame
window = pygame.display.set_mode((400, 400))
pygame.display.set_caption("Hello!")
screen = pygame.Surface((40, 40))
done = true
while done:
for e in pygame.event.get():
if e.type == pygame.QUIT:
done = false
screen.fill((0, 250, 50))
window.blit(screen, (10, 70))
pygame.display.flip()
Что появится на мониторе в результате выполнения кода
программы?
ответ: [35;40]
Объяснение:
Логическое ИЛИ истинно, если истинно хотя бы одно утверждение.
Введем обозначения:
(x ∈А) ≡ A; (x ∈ P) ≡ P; (x ∈ Q) ≡ Q; (x ∈ R) ≡ R.
Применив преобразование импликации, получаем:
¬P∨Q∨¬A∨R
¬P∨Q∨R истинно тогда, когда x∈(– ∞,15);(25,∞). Выражение ¬A должно быть истинно на интервале [15;25]. Поскольку все выражение должно быть истинно для ЛЮБОГО x, следовательно, выражение A должно быть истинно на промежутке, не включающем отрезок [15;25].
Из всех отрезков только отрезок [35;40] удовлетворяет этому условию.
Четырехразрядное число по условиям задания (1) и (2) имеет вид aabb,
где a=1,2,...5, b=0,1,...5.
В развернутой записи число имеет вид
a×6³+a×6²+b×6+b×1 = 6²×a(6+1)+b(6+1) = 7(36a+b)
При этом по условию (3) можно записать, что k² = 7(36a+b)
Чтобы число 7(36a+b) было полным квадратом, 36a+b должно быть кратно 7, а остаток от деления (36a+b) на 7 также должен быть полным квадратом.
Получаем, что 36a+b = 7m²
Минимальное значение 36a+b равно 36×1+0 = 36, следовательно m>2 (при m=2 получим 7×4=28, что меньше 36).
При m=3 получаем 36a+b = 63 и при a∈[1;5], b∉[0;5] решений нет.
При m=4 получаем 36a+b = 112 и находим a=3, b=4 - есть решение!
При m=5 получаем 36a+b = 175 и при a∈[1;5], b∉[0;5] решений нет.
При m=6 получаем 36a+b = 175 и получаем, что a=7, а это недопустимо. Дальше смысла проверять нет.
Итак, a=3, b=4, число 3344₆ = 7×(36×3+4) = 784₁₀ = 28²
ответ: 3344