ответ:Сначала приведу примеры степеней в нашей, десятичной системе:
То есть, если возводить основание системы в какую то целую степень, то число нулей равно показателю этой степени.
Так вот, в других системах так же. Например, если возводить 5 в какую то степень, то в пятеричной системе это число будет выглядеть как единица с числом нулей, равным показателю степени:
Приведём все слагаемые в этом выражении к виду степени с основанием 5:
Далее, представим как они выглядят в пятеричном виде (начнём с самого большого слагаемого):
(всего 216 нулей)
(всего 188 нулей)
(всего 3 нуля)
Если сложить в пятеричном виде первые два числа, то мы получим число, которое выглядит так:
10000100000...00000 (пятеричное)
(сначала идёт единица, затем 216-188-1=27 нулей, далее единица, далее 188 нулей)
Если теперь из этого вычесть то получим вот что:
10000044444...44000 (пятеричное)
(сначала идёт единица, затем 27+1=28 нулей, далее 188-3=185 четвёрок, далее 3 нуля)
Вот мы и получили ответ на вопрос в этой задаче- четвёрок тут ровно 185 штук.
Почему там появились четвёрки? Опять приведу примеры из десятичной системы:
А в пятеричной- то же самое, но будут четвёрки:
(ведь тут пять цифр- от 0 до 4, а после 4 идёт уже 10)
Теперь, пример посложнее в десятичной системе:
(то есть, произошло последовательное заимствование единицы из следующих разрядов, пока не дошло до разряда, в котором не было нуля)
Var a,b,d,K,kp:integer; P:boolean; Begin kp:=0; ReadLn(a,b); if (a = 1)or(a = 2) then Begin kp:=2; Write(2,' ',3) end else if a = 3 then Begin kp:=1; Write(3); End; if a < 5 then a:=5 else if a mod 2 = 0 then a:=a+1; While a<=b do Begin K:=Trunc(Sqrt(A)); d:=3; P:=true; While d <= K do Begin if A mod d = 0 then P:=false; d:=d+2 End; if P then Begin kp:=kp+1; Write(' ',a); End; a:=a+2 End; if kp = 0 then Write(0) End.
ответ:Сначала приведу примеры степеней в нашей, десятичной системе:
То есть, если возводить основание системы в какую то целую степень, то число нулей равно показателю этой степени.
Так вот, в других системах так же. Например, если возводить 5 в какую то степень, то в пятеричной системе это число будет выглядеть как единица с числом нулей, равным показателю степени:
Приведём все слагаемые в этом выражении к виду степени с основанием 5:
Далее, представим как они выглядят в пятеричном виде (начнём с самого большого слагаемого):
(всего 216 нулей)
(всего 188 нулей)
(всего 3 нуля)
Если сложить в пятеричном виде первые два числа, то мы получим число, которое выглядит так:
10000100000...00000 (пятеричное)
(сначала идёт единица, затем 216-188-1=27 нулей, далее единица, далее 188 нулей)
Если теперь из этого вычесть то получим вот что:
10000044444...44000 (пятеричное)
(сначала идёт единица, затем 27+1=28 нулей, далее 188-3=185 четвёрок, далее 3 нуля)
Вот мы и получили ответ на вопрос в этой задаче- четвёрок тут ровно 185 штук.
Почему там появились четвёрки? Опять приведу примеры из десятичной системы:
А в пятеричной- то же самое, но будут четвёрки:
(ведь тут пять цифр- от 0 до 4, а после 4 идёт уже 10)
Теперь, пример посложнее в десятичной системе:
(то есть, произошло последовательное заимствование единицы из следующих разрядов, пока не дошло до разряда, в котором не было нуля)
А вот, то же самое, но в пятеричной системе:
Объяснение:
a,b,d,K,kp:integer;
P:boolean;
Begin
kp:=0;
ReadLn(a,b);
if (a = 1)or(a = 2) then
Begin
kp:=2;
Write(2,' ',3)
end
else if a = 3 then
Begin
kp:=1;
Write(3);
End;
if a < 5 then a:=5
else if a mod 2 = 0 then a:=a+1;
While a<=b do
Begin
K:=Trunc(Sqrt(A));
d:=3;
P:=true;
While d <= K do
Begin
if A mod d = 0 then P:=false;
d:=d+2
End;
if P then
Begin
kp:=kp+1;
Write(' ',a);
End;
a:=a+2
End;
if kp = 0 then Write(0)
End.