Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырёх позиций: (11, 7), (30, 7), (10, 8), (10, 21). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 67. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 67 или больше камней. В начальный момент в первой куче было 5 камней, во второй куче – S камней; 1 ≤ S ≤ 61.
Задание 3
Укажите значение S, при котором одновременно выполняются два условия:
− у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
− у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
AutoHotkey позволяет автоматизировать задачи пользователя Windows таким образом, какой невозможен или затруднён в других языках программирования. Кроме того, этот язык компактен, самодостаточен и работает на всех версиях Windows «прямо из коробки».
//Обьявляем дополнительные переменные и главный массив, а также два дополнительных - они будут "половинками".
var
a, b, c: array [1..100] of longint;
i, min, n, j, t: longint;
begin
//Читаем количество элементов в нашем массиве.
readln(n);
//Читаем массив.
for i := 1 to n do read(a[i]);
//Заполняем первую "половинку".
for i := 1 to n div 2 do b[i] := a[i];
//Заполняем вторую "половинку". Но раз это уже вторая "половинка" главного массива, то и
//цикл теперь должен начинаться со второй части массива, а заканчиваться уже в его конце.
for i := n div 2 + 1 to n do c[i - n div 2] := a[i];
//Теперь отсортируем первую "половинку" методом выбора. Идея этого метода
//основывается на том, что мы ищем минимальный среди неотсортированных элемент,
//а затем аем его с тем, который стоит сразу после отсортированных.
for i := 1 to (n - 1) div 2 do
begin
min := i;
for j := i + 1 to n div 2 do
if b[min] > b[j] then
min := j;
if min <> i then begin
t := b[i];
b[i] := b[min];
b[min] := t;
end;
end;
//Затем вторую точно также, только стоит обратить внимание на сравнения.
//Так как надо отсортировать по убыванию, то теперь сравнение перед "swap"-ом
//будет другим.
for i := 1 to (n - 1) div 2 do
begin
min := i;
for j := i + 1 to n div 2 do
if c[min] < c[j] then
min := j;
if min <> i then begin
t := c[i];
c[i] := c[min];
c[min] := t;
end;
end;
//А теперь по очереди выводим готовые "половинки", не забывая ставить
//пробел после вывода каждого элемента.
for i := 1 to n div 2 do write(b[i], ' ');
for i := 1 to n - n div 2 do write(c[i], ' ');
end.