Я уже решал эту задачу. Я руками за 5 дней делаю 5 коробок, и на 6-ой день покупаю духовку. Руками и духовкой я делаю 2 коробки в день, за 5 дней - 10 коробок. На 6-ой день я покупаю вторую духовку. Руками и 2-мя духовками я за 5 дней делаю 15 коробок, и на 6-ой день покупаю 3-ью духовку. И так далее. Чтобы купить очередную духовку, я работаю 5 дней, а на 6-ой день ее покупаю, и у меня печенья не остается совсем. То есть, после покупки каждой духовки я начинаю всё с нуля. Главное - понять, когда нужно остановиться покупать духовки и начать уже копить печенье на складе. Итак, подведем итоги: 1) На покупку каждой духовки мы тратим 6 суток и начинаем с нуля. 2) Имея n духовок, мы делаем 584 коробок печенья за trunc(584/(n+1)) + 1 дней, где trunc(x) = [x] - это целая часть x. 3) Всего мы тратим времени T(n) = 6n + trunc(584/(n+1)) + 1 --> min Минимум функции trunc(584/(n+1)) совпадает с минимумом 584/(n+1) T(n) = 6n + 584/(n+1) + 1 --> min T'(n) = 6 - 584/(n+1)^2 = (6(n+1)^2 - 584) / (n+1)^2 = 0 6(n+1)^2 - 584 = 0 (n+1)^2 = 584/6 = 97,33 n + 1 = √97,33 ~ 9,86 = 10 n = 9 Значит, нужно ограничиться покупкой 9 духовок. За 6*9 = 54 дня мы их купим, и за 584/10 ~ 59 дней мы соберем нужное количество коробок на складе. Всего мы истратим 54 + 59 = 113 дней.
1. При использовании палитры из 2^24 цветов для хранения цвета 1 пикселя используется 24 бита = 3 байта. Пусть количество пикселей в рисунке K, тогда объем памяти, занимаемой одним рисунком = (K*3)/1024 + 128 Кбайт. X = 8*(K*3/1024 + 128)+2.5*1024 2. При использовании палитры из 2^16 цветов для хранения цвета 1 пикселя используется 16 бита = 2 байта. Объем памяти, занимаемой одним рисунком = (K*2)/1024 + 128 Кбайт. X = 20*(K*2/1024 + 128) 8*(K*3/1024 + 128)+2.5*1024 = 20*(K*2/1024 + 128) К = 65536 (количество пикселей в рисунке) X = 20*(K*2/1024 + 128) = 20*(65536*2/1024 + 128) Кбайт = 20*(128 + 128) Кбайт = 5120 Кбайт = 5120/1024 Мбайт = 5 Мбайт
Я руками за 5 дней делаю 5 коробок, и на 6-ой день покупаю духовку.
Руками и духовкой я делаю 2 коробки в день, за 5 дней - 10 коробок.
На 6-ой день я покупаю вторую духовку.
Руками и 2-мя духовками я за 5 дней делаю 15 коробок, и на 6-ой день покупаю 3-ью духовку.
И так далее. Чтобы купить очередную духовку, я работаю 5 дней, а на 6-ой день ее покупаю, и у меня печенья не остается совсем.
То есть, после покупки каждой духовки я начинаю всё с нуля.
Главное - понять, когда нужно остановиться покупать духовки и начать уже копить печенье на складе.
Итак, подведем итоги:
1) На покупку каждой духовки мы тратим 6 суток и начинаем с нуля.
2) Имея n духовок, мы делаем 584 коробок печенья за
trunc(584/(n+1)) + 1 дней, где trunc(x) = [x] - это целая часть x.
3) Всего мы тратим времени T(n) = 6n + trunc(584/(n+1)) + 1 --> min
Минимум функции trunc(584/(n+1)) совпадает с минимумом 584/(n+1)
T(n) = 6n + 584/(n+1) + 1 --> min
T'(n) = 6 - 584/(n+1)^2 = (6(n+1)^2 - 584) / (n+1)^2 = 0
6(n+1)^2 - 584 = 0
(n+1)^2 = 584/6 = 97,33
n + 1 = √97,33 ~ 9,86 = 10
n = 9
Значит, нужно ограничиться покупкой 9 духовок.
За 6*9 = 54 дня мы их купим, и за 584/10 ~ 59 дней мы соберем нужное количество коробок на складе.
Всего мы истратим 54 + 59 = 113 дней.
Пусть количество пикселей в рисунке K, тогда объем памяти, занимаемой одним рисунком = (K*3)/1024 + 128 Кбайт.
X = 8*(K*3/1024 + 128)+2.5*1024
2. При использовании палитры из 2^16 цветов для хранения цвета 1 пикселя используется 16 бита = 2 байта.
Объем памяти, занимаемой одним рисунком = (K*2)/1024 + 128 Кбайт.
X = 20*(K*2/1024 + 128)
8*(K*3/1024 + 128)+2.5*1024 = 20*(K*2/1024 + 128)
К = 65536 (количество пикселей в рисунке)
X = 20*(K*2/1024 + 128) = 20*(65536*2/1024 + 128) Кбайт =
20*(128 + 128) Кбайт = 5120 Кбайт = 5120/1024 Мбайт = 5 Мбайт