Зная количество бит в двоичной записи числа, можно посчитать количество бит в восьмеричной записи, так как из двоичной в восьмеричную систему счисления число можно привести группировкой по трем соседним разрядам, начиная с младших. Например, есть число 1100111. Сгруппируем его разряды: (1)(100)(111)=147 - в восьмеричной СС. Пусть количество разрядов 2-ичного числа равно n. Тогда количество разрядов восьмеричного числа будет n/3, деленное нацело и округленное вверх. n=7 => n/3=7/3. Округляем, будет 3. a) 10111010. n=8 => 8/3 - 3 8-ричных разряда б) 1001111000111, n=13 => 13/3 - 5 8-ричных разрядов в) A18C. Сначала найдем n. Посмотрим, сколько значащих разрядов у старшей цифры. A=1010 - 4 разряда. У остальных цифр по 4 разряда всегда. Поэтому n=3*4+4=16 => 16/3 - 6 8-ричных разрядов. г) 1375BE. 1=1 : 1 разряд => n=5*4+1=21 => 21/3 - 7 8-ричных разрядов
using System;
class Program
{
static void Main()
{
int x1 = 2, y1 = 1;
int x2 = 6, y2 = 5;
int x3 = 10, y3 = 1;
var a = Distance(x2, y2, x3, y3);
var b = Distance(x1, y1, x3, y3);
var c = Distance(x2, y2, x1, y1);
Console.WriteLine("S = {0}", Square(a, b, c));
Console.ReadKey();
}
//растояние между точками
static double Distance(int x1, int y1, int x2, int y2)
{
return Math.Sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
}
//формула герона
static double Square(double a, double b, double c)
{
var p = (a + b + c) / 2;
return Math.Sqrt(p * (p - a) * (p - b) * (p - c));
}
// теорема косинусов
static double Angle(double a, double b, double c)
{
return Math.Acos((b * b + c * c - a * a) / (2 * b * c));
}
static bool IsAcuteAngel(double alpha)
{
return alpha < Math.PI / 2;
}
}
a) 10111010. n=8 => 8/3 - 3 8-ричных разряда
б) 1001111000111, n=13 => 13/3 - 5 8-ричных разрядов
в) A18C. Сначала найдем n. Посмотрим, сколько значащих разрядов у старшей цифры. A=1010 - 4 разряда. У остальных цифр по 4 разряда всегда. Поэтому n=3*4+4=16 => 16/3 - 6 8-ричных разрядов.
г) 1375BE.
1=1 : 1 разряд => n=5*4+1=21 => 21/3 - 7 8-ричных разрядов