Дан целочисленный массив из 30 элементов. элементы массива могут принимать произвольные целые значения. напишите программу, которая находит и выводит номера двух элементов массива, сумма которых минимальна. исходные данные объявлены так, как показано ниже. запрещается использовать переменные, не описанные ниже, но разрешается не использовать часть из них.
const n=30;
var a: array [1..n] of integer;
i, j, min, min2, s: integer;
begin
for i: =1 to n do
readln(a[i]);
end.
public static void main(String args[]){
java.util.Scanner in = new java.util.Scanner(System.in);
String string = in.nextLine(); char chars[] = new char[4];
chars[0] = in.nextLine().charAt(0); chars[2] = in.nextLine().charAt(0);
for(int sChar = 0; sChar<string.length(); sChar++)
if(string.charAt(sChar)==chars[0])chars[1]++;
else if(string.charAt(sChar)==chars[2])chars[3]++;
System.out.print("\n"+(chars[1]==chars[3]?chars[0]+""+chars[2]:chars[1]>chars[3]?chars[0]:chars[2]));
}
}
= - 127, максимальное число = + 127
2) Число 1607, ячейка двухбайтовая, один бит под знак, следовательно, под число отводится 15 бит, в двоичном представлении 1607(10) = 11001000111(2), дополняем до 16 бит, старший бит - знаковый - нулевой, так как число положительное
= 0000011001000111(2) - это двоичное представление в двухбайтовой ячейке, чтобы получить шестнадцатиричное представление, разбиваем число справа - налево по 4 бита
0000 0110 0100 0111 и записываем в шестнадцатиричном виде
0111(2) = 7(16) 0100(2) = 4(16) 0110(2) =6(16) 0000(2) = 0(16)
1607(16) = 0647(16) или без старшего не значащего нуля = 647(16)
3) для получения дополнительного кода числа, находят обратное число, или инверсию числа,
для этого каждый бит числа изменяют на противоположный, 1 на 0, 0 на 1
105(10) = 1101001(2) - это и есть дополнительный код числа - 105, т.е. дополнительным кодом
числа (- а) будет число а.
Найдем дополнительный код в однобайтовой ячейке числа 105(10) = 01101001(2),
а) находим обратное 01101001(2) ->(обратное) ->10010110(2)
б) дополнительный код-> обратный код + 1 ->(дополнительный)->10010111(2), а это число - 105
потому, что отрицательные числа представляются в дополнительном коде.
Если для числа - 105 найти дополнительный код, то получим число 105
10010111(2)->(дополнительный)->01101000+1->01101001 = 69(16) = 16*6+9 = 96+9 = 105