4. Сколько времени потребуется сети, работающей со скоростью 28000 бит/с, для передачи 30 страниц текста по 50 строк в 70 символов каждая? Решение : ответ: сор
Будем наращивать длину последовательности от 0 знаков до N. Пусть после какого-то количества шагов у нас выписаны все последовательности длины А и мы хотим узнать количество подходящих последовательностей длины А+1. Распределим все последовательности на три группы(так как предыдущие символы нас не волнуют, то любые последовательности одной группы для нас равнозначны):
1) Заканчиваются на 0.
2) Ровно на одну единицу
3) Ровно на две единицы.
Из каждой последовательности группы 1 приписыванием нуля или единицы мы можем получить одну последовательность группы 1 и одну - группы 2. Неважно, какие именно, но они не перекрываются, т.к. предыдущие символы различны, хоть мы их и не учитываем. Точно так же из второй группы мы получаем одну последовательность группы 3 и одну группы 1, а из группы 3 - только группу 1. Таким образом, если количества последовательностей длины А по группам были (x, y, z), то для длины А+1 такое распределение будет (x+y+z, x, y). Если взять для длины 0 тройку (0, 0, 1) и просчитать тройки от 1 до N, получится искомое количество. Для N=1 и N=2 также работает правильно.
ассмотрим выражение X<5. Оно истинно для всех ответов
Рассмотрим выражение X<3. Оно истинно для 1, 2 и ложно для 3, 4
Рассмотрим первую импликацию: две истины дают истину, значит для ответов 1,2 вторую импликацию (после или) можно не рассматривать, поскольку первая часть истинна.
Для вариантов 3,4 рассмотрим вторую импликацию.
Выражения X<2 и X<1 для вариантов 3,4 дают ложь. Импликация, где оба аргумента дают ложь, истинна. Получается, что для ответов 3,4 истинна вторая импликация, а значит значение первой несущественно (для оператора или).
отсюда следует, что выражение "((X < 5)→(X < 3)) или ((X < 2)→(X < 1))" истинно при всех перечисленных значениях х: 1, 2, 3, 4
Описание алгоритма:
Будем наращивать длину последовательности от 0 знаков до N. Пусть после какого-то количества шагов у нас выписаны все последовательности длины А и мы хотим узнать количество подходящих последовательностей длины А+1. Распределим все последовательности на три группы(так как предыдущие символы нас не волнуют, то любые последовательности одной группы для нас равнозначны):
1) Заканчиваются на 0.
2) Ровно на одну единицу
3) Ровно на две единицы.
Из каждой последовательности группы 1 приписыванием нуля или единицы мы можем получить одну последовательность группы 1 и одну - группы 2. Неважно, какие именно, но они не перекрываются, т.к. предыдущие символы различны, хоть мы их и не учитываем. Точно так же из второй группы мы получаем одну последовательность группы 3 и одну группы 1, а из группы 3 - только группу 1. Таким образом, если количества последовательностей длины А по группам были (x, y, z), то для длины А+1 такое распределение будет (x+y+z, x, y). Если взять для длины 0 тройку (0, 0, 1) и просчитать тройки от 1 до N, получится искомое количество. Для N=1 и N=2 также работает правильно.
Программа на Pascal:
var num00,num01,num11,mem00:integer;
n,i:byte;
begin
readln(n);
num00:=1;
for i:=1 to n do begin
mem00:=num11;
num11:=num01;
num01:=num00;
num00:=num01+num11+mem00;
end;
writeln(num11+num01+num00);
end.
ассмотрим выражение X<5. Оно истинно для всех ответов
Рассмотрим выражение X<3. Оно истинно для 1, 2 и ложно для 3, 4
Рассмотрим первую импликацию: две истины дают истину, значит для ответов 1,2 вторую импликацию (после или) можно не рассматривать, поскольку первая часть истинна.
Для вариантов 3,4 рассмотрим вторую импликацию.
Выражения X<2 и X<1 для вариантов 3,4 дают ложь. Импликация, где оба аргумента дают ложь, истинна. Получается, что для ответов 3,4 истинна вторая импликация, а значит значение первой несущественно (для оператора или).
отсюда следует, что выражение "((X < 5)→(X < 3)) или ((X < 2)→(X < 1))" истинно при всех перечисленных значениях х: 1, 2, 3, 4