1) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета: Запрос Количество страниц (тыс.)
фрегат | эсминец 3000
фрегат 2000
эсминец 2500
Сколько страниц (в тысячах) будет найдено по запросу
фрегат & эсминец
2) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:
Запрос Количество страниц (тыс.)
фрегат & эсминец 500
фрегат 2000
эсминец 2500
Сколько страниц (в тысячах) будет найдено по запросу
фрегат | эсминец
3) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:
Запрос Количество страниц (тыс.)
фрегат & эсминец 500
фрегат | эсминец 4500
эсминец 2500
Сколько страниц (в тысячах) будет найдено по запросу
фрегат
4) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:
Запрос Количество страниц (тыс.)
крейсер | линкор 7000
крейсер 4800
линкор 4500
Сколько страниц (в тысячах) будет найдено по запросу
крейсер & линкор
5) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:
Запрос Количество страниц (тыс.)
торты | пироги 12000
торты & пироги 6500
пироги 7700
Сколько страниц (в тысячах) будет найдено по запросу
торты
6) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:
Запрос Количество страниц (тыс.)
пирожное | выпечка 14200
пирожное 9700
пирожное & выпечка 5100
Сколько страниц (в тысячах) будет найдено по запросу
выпечка
7) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.
1 ) хвост & лапы & (усы | документы)
2 ) усы & хвост & лапы & документы
3 ) лапы & хвост
4) лапы | хвост
8) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.
1 ) барокко | классицизм
2 ) барокко | (классицизм & модерн)
3 ) (барокко & ампир) | (классицизм & модерн)
4) барокко | ампир | классицизм | модерн
9) Некоторый сегмент сети Интернет состоит из 5000 сайтов. Поисковый сервер в автоматическом режиме составил таблицу ключевых слов для сайтов этого сегмента. Вот ее фрагмент:
Ключевое слово Количество сайтов, для которых данное слово является ключевым
принтеры 400
сканеры 300
мониторы 500
Сколько сайтов будет найдено по запросу
(принтеры | мониторы) & сканеры
если по запросу принтеры | сканеры было найдено 600 сайтов, по запросу принтеры | мониторы – 900, а по запросу сканеры | мониторы – 750.
10) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:
Запрос Количество страниц (тыс.)
шахматы | теннис 7770
теннис 5500
шахматы & теннис 1000
Сколько страниц (в тысячах) будет найдено по запросу
шахматы
1. + n 3 8 9 8
2 n 7 5 m
m 8 5 n 3
ясно, что основание искомой с/с > 10. Проверим и удостоверимся, что в 11c|c действия выполняются верно.
11 c|c M=6 n = 4
ответ: основание системы 11, m=6, n=4
2. m m 65 n
+2 n 4 4 m
5 5 4 2 4 очевидно, что основание искомой с/с > 6.
Проверим по действиям в 7 с/с, при сложении в столбик,
при m=3 и n=1
и удостоверимся, что всё верно.
ответ: осн. с\с = 7, m=3, n=1
3. пусть основание с\с будет X? тогда:
(4*X^2+X+5)*4 =2*X^3+2*X^2+6*X+6
раскрываем скобки, преобразуем и получаем уравнение:
(2*X - 14)*(X^2+1) = 0 ---> X=7
ответ:7
a) 10111010. n=8 => 8/3 - 3 8-ричных разряда
б) 1001111000111, n=13 => 13/3 - 5 8-ричных разрядов
в) A18C. Сначала найдем n. Посмотрим, сколько значащих разрядов у старшей цифры. A=1010 - 4 разряда. У остальных цифр по 4 разряда всегда. Поэтому n=3*4+4=16 => 16/3 - 6 8-ричных разрядов.
г) 1375BE.
1=1 : 1 разряд => n=5*4+1=21 => 21/3 - 7 8-ричных разрядов