1. необходимо объединить компьютеры в многоквартирном
доме с несколькими . какую топологию сети вы-
берете? какой тип кабеля? с какими средствами передачи?
обоснуйте свой выбор.
2. какой тип сети вы бы выбрали для объединения трех смарт-
фонов среди друзей? обоснуйте свой выбор.
ответит
Объяснение:
сть несколько перевода чисел из любой системы счисления в десятичную. Один их них основан на алгоритме для вычисления значения многочлена в некоторой точке х, который носит название вычислительной схемы Горнера.
Для перевода целых чисел из десятичной системы счисления в систему счисления с основанием р:
Последовательно делить заданное число и получаемые целые части на новое основание счисления (р) до тех пор, пока целая часть не станет ровна нулю.
Полученные остатки от деления, представленные цифрами из нового счисления, записать в виде числа, начиная с последней целой части.
Пример 1. Перевести число 61 из десятичной системы счисления в двоичную:
(В дальнейшем будет использоваться краткая запись задания: 6110 = Х2)
61 = 30 • 2 + 1;
30 = 15 • 2 + 0;
15 = 7 • 2 + 1;
7 = 3 • 2 + 1;
3 = 1 • 2 + 1;
1 = 0 • 2 + 1.
ответ: 6110 = 1111012.
(Можно заметить, что рассмотренный «Пример 1» является противоположным «Примеру 1» рассмотренному в предыдущей теме. Таким образом, всегда можно делать проверку результата при переводе чисел из любой системы счисления в десятичную, и наоборот).
Пример 2. 27110 = Х8:
271 = 33 • 8 + 7;
33 = 4 • 8 + 1;
4 = 0 • 8 +4.
ответ: 27110 = 4178.
Пример 3. 1140610 = Х16:
11406 = 712 • 16 + 14;
712 = 44 • 16 + 8;
44 = 2 • 16 +12;
2 = 0 • 16 +2.
Учитывая, что в шестнадцатеричной системе счисления числу 14 соответствует цифра Е, а числу 12 цифра С, запишем ответ:
ответ: 1140610 = 2С8Е16.
(Будет не правильно записать ответ: 1140610 = 21281416)
Четырехразрядное число по условиям задания (1) и (2) имеет вид aabb,
где a=1,2,...5, b=0,1,...5.
В развернутой записи число имеет вид
a×6³+a×6²+b×6+b×1 = 6²×a(6+1)+b(6+1) = 7(36a+b)
При этом по условию (3) можно записать, что k² = 7(36a+b)
Чтобы число 7(36a+b) было полным квадратом, 36a+b должно быть кратно 7, а остаток от деления (36a+b) на 7 также должен быть полным квадратом.
Получаем, что 36a+b = 7m²
Минимальное значение 36a+b равно 36×1+0 = 36, следовательно m>2 (при m=2 получим 7×4=28, что меньше 36).
При m=3 получаем 36a+b = 63 и при a∈[1;5], b∉[0;5] решений нет.
При m=4 получаем 36a+b = 112 и находим a=3, b=4 - есть решение!
При m=5 получаем 36a+b = 175 и при a∈[1;5], b∉[0;5] решений нет.
При m=6 получаем 36a+b = 175 и получаем, что a=7, а это недопустимо. Дальше смысла проверять нет.
Итак, a=3, b=4, число 3344₆ = 7×(36×3+4) = 784₁₀ = 28²
ответ: 3344