1. Дан массив из 20 целых чисел заполненный случайными числами из интервала [-15; 15]. Найти сумму элементов от элемента с номером А до элемента с номером В. А и В вводятся с клавиатуры.
2. В массиве из 20 элементов заполненном целыми числами из интервала [0; 1000] найти количество четных двузначных чисел.
3. Дан массив из 15 целых чисел заполненный случайными числами из интервала [0; 20]. Выведите этот массив в строку и найдите количество четных элементов массива, которые меньше среднего арифметического его элементов
При использовании двоичной арифметики приходится сталкиваться с тем, что большинство нецелых чисел невозможно точно представить в двоичной системе, как нельзя, например, в десятичной системе точно представить в виде десятичной дроби число 1/3 = 0.333
Рассмотрим пример. Если в простых дробях (1/3) х 3 = 1, то в десятичных 0.3333 х 3 = 0.9999.
В двоичной машинной арифметике происходит аналогичная ситуация. Но если человек сознает, что результат 0.9999... - та же единица, то компьютер этого не понимает. В результате в компьютерной арифметике (1 / 3) х 3 не равняется единице.
Еще пример. Пусть нам надо вычислить значение функции в точках от -2π до 2π с шагом π/6. Человек будет использовать значения -2π, -11π/6, -10π/6 и т.д. пока не придет к точке 2π. Компьютер (в арифметике с обычной точностью) вычислит значение -2π как -6.283185, а шаг представит значением 0.5235988. Это приведет к тому, что когда мы придем к нулю, то получим значение аргумента -9.536743х10⁻⁷, а в конечной точке получим аргумент 6.283184, который по абсолютной величине отличается от начального на единицу в младшей цифре, т.е. для компьютера при таком последовательном счете |-2π| ≠ 2π.
Третий пример. отрицательные целые числа представляются в компьютере в дополнительном коде, когда старший разряд является знаковым: 0 - это плюс, 1 - это минус.
Пусть мы прибавляем к 127 единицу в арифметике целых чисел, которым в двоичном представлении отведен один байт:
1111111₂ + 1₂ = 10000000₂ - тут все понятно, единичка перешла в старший, восьмой разряд. Но ведь он ЗНАКОВЫЙ! И вместо двоичного эквивалента 128 в компьютерной арифметике мы получаем отрицательное число! Причем, что самое интересное, из соображений эффективности эта ситуация обычно аппаратно не контролируется и в результате программы могут вести себя очень странно.
const
n=20;
var
a:array[1..n] of integer;
i,imax,imin:integer;
s:longint;
begin
Randomize;
Writeln('Исходный ряд значений');
imax:=1; imin:=1;
for i:=1 to n do begin
a[i]:=Random(51)-25; Write(a[i],' ');
if a[i]>a[imax] then imax:=i
else
if a[i]<a[imin] then imin:=i
end;
Writeln;
if imax>imin then
Writeln('Максимальный элемент встретился позже минимального')
else begin
s:=0;
for i:=imax+1 to imin-1 do s:=s+a[i];
Writeln('Сумма элементов между максимальным и минимальным значением ',s)
end
end.
Тестовое решение:
Исходный ряд значений
10 -3 9 5 20 10 6 2 -19 -19 6 -24 -7 -1 23 11 -8 -16 -14 -25
Сумма элементов между максимальным и минимальным значением -27