1. Правильный четырехугольник - квадрат. Радиус описанной около квадрата окружности равен половине диагонали.
Если а - сторона квадрата, d - диагональ и R - радиус описанной окружности, то
d = a√2 = 20√2.
R = d/2 = 10√2
2. Центр окружности, описанной около прямоугольника, лежит в точке пересечения его диагоналей. Диагонали прямоугольника равны и являются диаметрами окружности.
По теореме Пифагора:
d = √(12² + 5²) = √(144 + 25) = √169 = 13 см
Длина окружности:
C = πd = 13π см
3. ∠KOD = 30° - центральный угол, значит и градусная мера соответствующей ему дуги тоже 30°.
∪ DK = 30°
∠МОК = 180° ⇒ ∪ MTK = 180°,
∪ MD = 360° - 180° - 30° = 150°
Длина дуги находится по формуле:
С = 2πR · α / 360°
С_dk = 2π · 5 · 30° / 360° = 5π/6 см
C_mtk = 2π · 5 · 180° / 360° = 5π см
C_md = 2π · 5 · 150° / 360° = 25π/6 см
4. Радиус окружности, описанной около правильного шестиугольника, равен стороне шестиугольника:
Треугольник АВС, О-центр вписан.окруж., М-точка касания с гипотенузой АС, СМ=1, АМ=2, Е-точка касания с катетом ВС и К-точка касания с катетом АВ, СЕ=СМ=1 (отрезки, касательных к окружности, проведенных из одной точки), так же АК=АМ=2, ОЕ=ОК= радиусу окружности. ОЕ перпендикулярно к ВС (отрезок, проведенный от центра окружности к точке касания, перпендикю к данной стороне), также ОК перпендик. к ВА. угол АВС-90градусов. ВКОЕ-квадрат, где сторона равна радиусу и обозначим за х, тогда ВА=2+х, ВС=х+1, Ас=2+1=3-гипотенуза По теореме Пифагора (х+1)^2+(х+2)^2=3^2 x^2+2x+1+x^2+4x+4=9 2x^2+6x-4=0 сократим на 2 х^2+3x-2=0 дискрим Д=9+8=17 Х1=(-3+корень из 17)/2 (корень из 17 приблиз равен 4,12) х2=(-3-корень из17)/2 (отрицат. быть не может) ответ: радиус равен (-3+корень из 17)/2
1. Правильный четырехугольник - квадрат. Радиус описанной около квадрата окружности равен половине диагонали.
Если а - сторона квадрата, d - диагональ и R - радиус описанной окружности, то
d = a√2 = 20√2.
R = d/2 = 10√2
2. Центр окружности, описанной около прямоугольника, лежит в точке пересечения его диагоналей. Диагонали прямоугольника равны и являются диаметрами окружности.
По теореме Пифагора:
d = √(12² + 5²) = √(144 + 25) = √169 = 13 см
Длина окружности:
C = πd = 13π см
3. ∠KOD = 30° - центральный угол, значит и градусная мера соответствующей ему дуги тоже 30°.
∪ DK = 30°
∠МОК = 180° ⇒ ∪ MTK = 180°,
∪ MD = 360° - 180° - 30° = 150°
Длина дуги находится по формуле:
С = 2πR · α / 360°
С_dk = 2π · 5 · 30° / 360° = 5π/6 см
C_mtk = 2π · 5 · 180° / 360° = 5π см
C_md = 2π · 5 · 150° / 360° = 25π/6 см
4. Радиус окружности, описанной около правильного шестиугольника, равен стороне шестиугольника:
R = a = 12 см
Центральный угол правильного шестиугольника:
α = 360° / 6 = 60°
Площадь кругового сектора:
S = πR² · α / 360°
S = π · 144 · 60° / 360° = 24π см²