Расстояние от вершины треугольника В до точки касания Н с вписанной в треугольник окружностью равно разности полупериметра треугольника и противоположной вершине В стороны (теорема) или в нашем случае
ВН = 40/2 -АС = 20 - 2*DC. (1) (так как в равнобедренном треугольнике высота является и медианой)
В прямоугольном (радиус ОН перпендикулярен стороне ВС в точке касания Н) треугольнике ВОН ОН = OD =(2/5)*BD (дано).
Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота. Сторона параллелограмма дана ВС=19. Необходимо найти высоту h. Вообще-то она равна 14, т.е. удвоенное расстояние от точки К до стороны АВ. Надо доказать,что расстояние от точки К до стороны ВС равно расстоянию от точки К до стороны АВ. Соединим концы биссектрис углов А и В и обозначим буквами M и N. Полученная фигура ABNM - ромб. Доказывается равнобедренность треугольников ABN и AMN через равенство противолежащих углов. Проведем перпендикуляры из точки К к сторонам ВС и AD. Они равны как высоты равных треугольников и равны расстоянию от точки К к стороне АВ, т. е. равны 7. Таким образом высота параллелограмма равна 14. Площадь равна 14*19
АС = 16 ед.
Объяснение:
Расстояние от вершины треугольника В до точки касания Н с вписанной в треугольник окружностью равно разности полупериметра треугольника и противоположной вершине В стороны (теорема) или в нашем случае
ВН = 40/2 -АС = 20 - 2*DC. (1) (так как в равнобедренном треугольнике высота является и медианой)
В прямоугольном (радиус ОН перпендикулярен стороне ВС в точке касания Н) треугольнике ВОН ОН = OD =(2/5)*BD (дано).
ВО = BD - (2/5)*BD = (3/5)*BD и по Пифагору:
ВН = √(ВО²-ОН²) = √(9*ВО²/25-4*ВО²/25) = (√5/5)*BD.
Прямоугольные треугольники ВDC и ВНО подобны по общему острому углу. Из подобия: ВН/ОН=BD/DC. =>
DC = BD*OH/BH = BD*2*BD*5/(5*√5*BD) = (2/√5)*BD.
Из (1): (√5/5)*BD = 20 - (4/√5)*BD => BD*5/√5 = 20 =>
BD = 4√5 ед. Тогда
DC = (2/√5)*BD = (2/√5)*4√5 = 8 ед.
АС = 2*DC = 16 ед.
Сторона параллелограмма дана ВС=19.
Необходимо найти высоту h.
Вообще-то она равна 14, т.е. удвоенное расстояние от точки К до стороны АВ.
Надо доказать,что расстояние от точки К до стороны ВС равно расстоянию от точки К до стороны АВ.
Соединим концы биссектрис углов А и В и обозначим буквами M и N.
Полученная фигура ABNM - ромб. Доказывается равнобедренность треугольников ABN и AMN через равенство противолежащих углов.
Проведем перпендикуляры из точки К к сторонам ВС и AD. Они равны как высоты равных треугольников и равны расстоянию от точки К к стороне АВ, т. е. равны 7. Таким образом высота параллелограмма равна 14.
Площадь равна 14*19