Возьми транспортир (полукруглая линейка такая с числами-градусами) Ищешь на транспортире отметку 110, помечаешь ее, проводишь от этой пометки наклонную линию, и потом еще одну, обычную горизонтальную линию, чтобы получился угол. А чтобы проверить, что угол равен именно 110 градусам, подставь транспортир к углу так, чтобы кончик угла оказался ровно на середине низа полукруга в транспортире, и смотришь, на какую цифру показывает верхняя "палка" угла, если на 110, значит, естественно, все правильно.
Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
Возьми транспортир (полукруглая линейка такая с числами-градусами) Ищешь на транспортире отметку 110, помечаешь ее, проводишь от этой пометки наклонную линию, и потом еще одну, обычную горизонтальную линию, чтобы получился угол. А чтобы проверить, что угол равен именно 110 градусам, подставь транспортир к углу так, чтобы кончик угла оказался ровно на середине низа полукруга в транспортире, и смотришь, на какую цифру показывает верхняя "палка" угла, если на 110, значит, естественно, все правильно.
EF - средняя линия
EO = 3 см
OF = 4 см
Найти: AB
Решение.
1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам.
2) Рассмотрим треугольники EOD и ABD.
Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD.
Угол DBC общий. Следовательно, треугольник BOF подобен BDC.
3) Из подобия треугольников следует, что
AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.