Пусть с - наибольшая сторона, а и b две остальные.
Если с²= а²+b² => треугольник прямоугольный.
Если с²<a²+b² => треугольник остроугольный.
Если с²> а²+b² => треугольник тупоугольный.
1) Стороны 7, 5, 11.
11 - наибольшая сторона.
11² и 5²+7²;
121 и 25+49;
121 > 74 => треугольник с такими сторонами является тупоугольным.
2) Стороны 19, 15, 18.
19 - наибольшая сторона.
19² и 15² + 18²;
361 и 225+324;
361 < 549 => треугольник с такими сторонами является остроугольным.
3) Стороны 5, 12, 13.
13 - наибольшая сторона.
13² и 5² + 12²;
169 и 25+144;
169=169 => треугольник с такими сторонами является прямоугольным.
ОТВЕТ: 1) тупоугольный;
2) остроугольный;
3) прямоугольный.
Р = 4,8 * 3 = 14,4 (см)
ответ: 14,4 см - периметр Δ.
2) В равнобедренном Δ боковые стороны равны
7,3 + 7,3 = 14,6 (см) - сумма двух боковых сторон
22,3 - 14,6 = 7,7 (см)
ответ: 7,7 см - основание Δ
3) Углы при основании равнобедренного треугольника равны.
⇒ ∠А = ∠С.
Сумма углов треугольника = 180°=
⇒∠А = ∠С = (180° - 74°) : 2 = 106° : 2 = 54°
Биссектриса делит угол пополам,
⇒ ∠ВАD = ∠САD = 54° : 2 = 27°
ответ: ∠САD = 27°
4) Медиана делит противоположную сторону пополам
⇒ DС = ВD = 12 (см);
ВС= 12+12 = 24 (см)
АВ = ВС (по условию)
АВ = 24см
AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон
А дальше не решается, задача написана не до конца.
Пусть с - наибольшая сторона, а и b две остальные.
Если с²= а²+b² => треугольник прямоугольный.
Если с²<a²+b² => треугольник остроугольный.
Если с²> а²+b² => треугольник тупоугольный.
1) Стороны 7, 5, 11.
11 - наибольшая сторона.
11² и 5²+7²;
121 и 25+49;
121 > 74 => треугольник с такими сторонами является тупоугольным.
2) Стороны 19, 15, 18.
19 - наибольшая сторона.
19² и 15² + 18²;
361 и 225+324;
361 < 549 => треугольник с такими сторонами является остроугольным.
3) Стороны 5, 12, 13.
13 - наибольшая сторона.
13² и 5² + 12²;
169 и 25+144;
169=169 => треугольник с такими сторонами является прямоугольным.
ОТВЕТ: 1) тупоугольный;
2) остроугольный;
3) прямоугольный.