∠NBK = ∠AKC = 70° как соответственные при пересечении BN║АК секущей ВК,
∠BNK = ∠NKA = 70° как накрест лежащие при пересечении BN║АК секущей NК,
Значит ΔBNK равнобедренный с основанием NB.
∠NBK = ∠BNM + ∠M, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним, тогда
∠М = 70° - 20° = 50°
P.S. Из решения получается, что ∠MNK = 90°, но тогда NB - медиана, проведенная к гипотенузе, а тогда она равна половине гипотенузы, т.е. NB = MB = BK. Но тогда треугольники NBM и NBK равнобедренные, с основаниями NM и NK, но это не соответствует данным задачи. Следовательно, NB - это не медиана. И тогда правильным будет рисунок 2.
∠M = 50°
ΔBNK равнобедренный
Объяснение:
∠NBK = ∠AKC = 70° как соответственные при пересечении BN║АК секущей ВК,
∠BNK = ∠NKA = 70° как накрест лежащие при пересечении BN║АК секущей NК,
Значит ΔBNK равнобедренный с основанием NB.
∠NBK = ∠BNM + ∠M, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним, тогда
∠М = 70° - 20° = 50°
P.S. Из решения получается, что ∠MNK = 90°, но тогда NB - медиана, проведенная к гипотенузе, а тогда она равна половине гипотенузы, т.е. NB = MB = BK. Но тогда треугольники NBM и NBK равнобедренные, с основаниями NM и NK, но это не соответствует данным задачи. Следовательно, NB - это не медиана. И тогда правильным будет рисунок 2.
1) Биссектриса угла Е делит его на два по 38°.
В треугольнике СКЕ углы при основании СЕ равны.
В равнобедренном треугольнике углы при основании равны.
Следовательно, треугольник СКЕ - равнобедренный.
2) В треугольнике большей является сторона, лежащая против большего угла, меньшей - лежащая против меньшего угла.
КD в треугольнике КDE лежит против меньшего угла этого треугольника. Этот угол равен 38°, остальные - 66° и 76°
Следовательно, КD - меньшая сторона.
Отсюда КЕ>DK, а так как КС=КЕ, то КС>DK.