Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
10) Рассмотрим треуг MNK, где HK высота MH = 6 Рассмотрим треуг MHK угол MHK = 90 (HK высота треуг). Угол M =60 угол MKH = 180-(90+60) = 30 Против угла в 30 град, лежит катет, равный половине гипотенузы. MH катет ⇒ МК= 6*2=12 MN = 24 NH = 24-6 = 18 ( Вы пишете, надо найти MH и NH, но по условию MH=6, поэтому находим то, что не дано - MN) ...
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
Рассмотрим треуг АВС. ВД - биссектриса, угол В=80, ⇒
угол АВД = углу СВД = 1/2 угла В = 1/2 * 80 = 40
Рассмотрим треуг АВД. Угол В=40, угол Д=120, ⇒
угол А=180-(40+120) = 20
Рассмотрим треуг АВС. Угол В=80, угол А=20, ⇒
угол С=180-(80+20) = 80
Рассмотрим треуг ДВС. Угол С=80, угол В=40, ⇒
угол Д=180-(80+40) = 60
ответ: в треуг СВД угол С=80, угол В=40, угол Д=60
10)
Рассмотрим треуг MNK, где HK высота
MH = 6
Рассмотрим треуг MHK
угол MHK = 90 (HK высота треуг).
Угол M =60
угол MKH = 180-(90+60) = 30
Против угла в 30 град, лежит катет, равный половине гипотенузы.
MH катет ⇒
МК= 6*2=12
MN = 24
NH = 24-6 = 18
( Вы пишете, надо найти MH и NH, но по условию MH=6, поэтому находим то, что не дано - MN) ...