Сфера пересечена плоскостью, находящейся на расстоянии х от центра сферы (обозначим центр сферы точкой О). В сечении получается окружность. Обозначим центр этой окружности точкой О1. Отрезок ОО1 (равный х) и есть искомое расстояние. В окружность вписан прямоугольник (пусть АВСD). Его диагонали (АС и BD) равны диаметру этой окружности (d) и пересекаются в точке О1. Из центра сферы (точка О) проведем радиусы ОА и ОС к двум противоположным углам прямоугольника. Получим равнобедренный треугольник ОАС. ОО1 - является его высотой, медианой и биссектрисой, и делит его на два равных прямоугольных треугольника ОО1А и ОО1С. Значит АО1=О1С=16/2=8 см. Из одного из этих прямоугольных треугольников по Пифагору вычисляем расстояние ОО1. Оно равно √(10^2-8^2)=6 см.
Если все боковые ребра треугольной пирамиды равны между собой, то проекция вершины пирамиды является центром описанной окружности основания. а центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы.Гипотенуза о=треугольника равна √(6^2+8^2)=10 см., а расстояние от середины гипотенузы до любой вершины треугольника, лежащего в основании, равно 10/2=5 см. Рассмотрим любой из прямоугольных треугольников, образованных высотой пирамиды, одним из боковых ребер пирамиды и его проекцией. Боковое ребро (гипотенуза) 13 см, его проекция 5 см. По Пифагору,высота равна √(13^2-5^2)=12 см.