1) надо найти площадь основания, для этого надо знать его радиус r Его определить можно через длину окружности основания, которая равна длине дуги развертки боковой поверхности, она неизвестна-но ее можно найти через радиус R развертки(в конусе это будет образующая) Площадь боковой поверхности S(бок)=piR^2/360*36=piR^2/10=10 piR^2=100 R^2=100/pi R=10/√pi L=2piR/360*60=2piR/10=piR/5=pi*10/(√pi*5)=2√pi-длина окружности основания 2pir=2√pi r=1/√pi S(основания)=pir^2=1 Тогда полная поверхность конуса S=S(осн)+S(бок)=1+10=11 2)при вращении треугольника вокруг катета получится конус с радиусом и высотой а S=pia^2+pia*a√2=pia^2(1+√2) 2a)при вращении вокруг гипотенузы образуется поверхность из двух одинаковых конусных боковых поверхностях с образующими, равными а и радиусом a/√2 S=2S(б)=2*pi*a*a/√2=pia^2√2 2в) на рисунке фигура вращения, она состоит из двух частей ломаная из 2 катетов образует поверхность, равную найденной в предыдущем задании pia^2√2 и осталось найти площадь , образованную вращением гипотенузы-это будет боковая поверхность цилиндра с высотой a√2 и радиусом a/√2 S1=2pi*a/√2*a√2=2pia^2 тогда вся поверхность вращения будет S=2pia^2+pia^2√2=pia^2(2+√2)
Его определить можно через длину окружности основания, которая равна длине дуги развертки боковой поверхности, она неизвестна-но ее можно найти через радиус R развертки(в конусе это будет образующая)
Площадь боковой поверхности S(бок)=piR^2/360*36=piR^2/10=10
piR^2=100
R^2=100/pi
R=10/√pi
L=2piR/360*60=2piR/10=piR/5=pi*10/(√pi*5)=2√pi-длина окружности основания
2pir=2√pi
r=1/√pi
S(основания)=pir^2=1
Тогда полная поверхность конуса S=S(осн)+S(бок)=1+10=11
2)при вращении треугольника вокруг катета получится конус с радиусом и высотой а
S=pia^2+pia*a√2=pia^2(1+√2)
2a)при вращении вокруг гипотенузы образуется поверхность из двух одинаковых конусных боковых поверхностях с образующими, равными а и радиусом a/√2
S=2S(б)=2*pi*a*a/√2=pia^2√2
2в) на рисунке фигура вращения, она состоит из двух частей
ломаная из 2 катетов образует поверхность, равную найденной в предыдущем задании pia^2√2 и осталось найти площадь , образованную вращением гипотенузы-это будет боковая поверхность цилиндра с высотой a√2 и радиусом a/√2
S1=2pi*a/√2*a√2=2pia^2
тогда вся поверхность вращения будет S=2pia^2+pia^2√2=pia^2(2+√2)
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².