1) Если точка X принадлежит прямой AB, то это середина отрезка AB.
2) Если речь идёт о какой либо плоскости, проходящей через точки A, B, то геометрическим местом точек, равноудалённых от точек A и B в этой плоскости, является серединный перпендикуляр к отрезку AB. За точку X можно взять любую точку этого перпендикуляра.
3) Если точки A и B взяты в пространстве, то точкой X может служить любая точка плоскости, перпендикулярной отрезку AB, и прходящей через середину этого отрезка.
коэффициент подобия = отношению сторон...
отрезанный маленький треугольник будет подобен данному треугольнику)))
две другие стороны маленького треугольника обозначим (х) и (у)
Р(АВС) = a+b+с = 8
р = х+у+1
c/1 = a/x = b/y = k ---> с = k
a = x*c
b = y*c
Р(АВС) = 8 = (x+y+1)*c
P(ABC) = k*p = 8 = p*с
отрезки касательных, проведенных из одной точки, равны...
поэтому можно записать: с = a+b - (x+y+1) = a+b - p = (8-c) - 8/c
с² = 8c - c² - 8
c² - 4c + 4 = 0
(c - 2)² = 0
c = 2
Отметим какие-либо точки A и B.
Объяснение:
1) Если точка X принадлежит прямой AB, то это середина отрезка AB.
2) Если речь идёт о какой либо плоскости, проходящей через точки A, B, то геометрическим местом точек, равноудалённых от точек A и B в этой плоскости, является серединный перпендикуляр к отрезку AB. За точку X можно взять любую точку этого перпендикуляра.
3) Если точки A и B взяты в пространстве, то точкой X может служить любая точка плоскости, перпендикулярной отрезку AB, и прходящей через середину этого отрезка.