Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. 1) Обозначим расстояние от В до плоскости - ВС, от М до плоскости - МН. АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. Отрезки, перпендикулярные плоскости , параллельны. Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны. Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒ ВС:МН=5:2 МН=2•(12,5:5)=5 м Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. –––––––––––––––––––––––––––––––––––––– 2)Пусть наклонные будут: ВС=а, ВА=а+6 ВН- расстояние от общего конца В до плоскости. Т.к. это расстояние общее, ВН⊥ плоскости, то из прямоугольного ∆ АВН ВН²=АВ²-АН² из прямоугольного ∆ ВСН ВН²=ВС²-НС²⇒ АВ²-АН²=ВС²-НС² (а+6)²-17²=а²-7² ⇒ решив уравнение, получим 12а=204 а=17 см ВС=17 см АВ=17+6=23 см ––––––––––––––––––––– 3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. Т.к. обе вертикальные, то они параллельны. Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м, ∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). ответ - 5 м.
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.
АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой.
Отрезки, перпендикулярные плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые,
угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒
ВС:МН=5:2
МН=2•(12,5:5)=5 м
Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м.
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
ВС=а, ВА=а+6
ВН- расстояние от общего конца В до плоскости.
Т.к. это расстояние общее, ВН⊥ плоскости, то
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м.
Т.к. обе вертикальные, то они параллельны.
Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м,
∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат).
ответ - 5 м.
Объяснение:
8.
1) Пусть ∠С = х°, тогда
∠В = 2х
2) Рассмотрим ΔАDС
Он - равнобедренный, т.к. АD= DС по условию. Следовательно,
∠С =∠DАС = х
3) ∠DАС = ∠DАВ - по условию,
∠DАС = ∠DАВ = х, а
∠ВАС = 2х
4) Сумма углов в треугольнике = 180°
∠ВАС + ∠В + ∠С = 180°
2х + 2х + х = 180°
5х = 180°
х = 180° : 5 = 36°
∠С = 36°
∠ВАС = ∠В = 36° * 2= 72°
9.
1) △NКР - равнобедренный, т.к. NR = KP по условию, значит,
∠KNP = ∠NPK = ( 180° - 110°) /2 = 70°/2 = 35°
2) ∠KNP = ∠KNМ по условию, значит,
∠KNP = ∠KNМ =35° , а
∠МNР = 2 *35° = 70°
3) Рассмотрим △МNР
∠МNР =70°
∠KNМ =35°
∠КМР = 180° - 70° - 35° = 75°
10.
Пусть 1ч. угла = х, тогда
∠TSR = 3x,
∠RSP = 5x, следовательно,
∠TSP = 3x + 5x =8x
2) Рассмотрим △ROP и △RОS
RO -общая сторона, РО = ОS по условию,
∠ROS = ∠ROP =90° по условию. Следовательно,
△ROP и △RОS по 2-м сторонам и углу между ними. Из этого следует,что
∠P = ∠RSP = 5x
3) Рассмотрим △РTS
∠P = 5х, ∠TSP = 8x, ∠TPS = 115°, тогда
∠P +∠TSP +∠TPS = 180°
5х + 8х + 115° = 180°
13х = 65°
х = 5°
4) ∠P = 5х = 5 * 5° = 25°
∠TSP = 8x = 8 * 5° = 40°