1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
расстояния от точки до прямой получаем:
x0 + x0 − 4 √
√ = 2 2,
2
|x0 − 2| = 2.
Отсюда x0 = 0 или x0 = 4. Таким образом, за точку C мы можем взять
начало координат C (0, 0). Легко теперь составить уравнение двух сторон
ромба:
AC : 3x − y = 0,
BC : x − 3y = 0.
Две другие стороны BD и AD параллельны AC и BC соответственно и
проходят через точки A (1, 3) и B (3, 1). Поэтому:
BD : 3(x − 3) − (y − 1) = 0, 3x − y − 8 = 0,
AD : (x − 3) − 3(y − 1) = 0, x − 3y + 8 = 0.
Рисунок 1 иллюстрирует решение задачи.
правильно посматри
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
расстояния от точки до прямой получаем:
x0 + x0 − 4 √
√ = 2 2,
2
|x0 − 2| = 2.
Отсюда x0 = 0 или x0 = 4. Таким образом, за точку C мы можем взять
начало координат C (0, 0). Легко теперь составить уравнение двух сторон
ромба:
AC : 3x − y = 0,
BC : x − 3y = 0.
Две другие стороны BD и AD параллельны AC и BC соответственно и
проходят через точки A (1, 3) и B (3, 1). Поэтому:
BD : 3(x − 3) − (y − 1) = 0, 3x − y − 8 = 0,
AD : (x − 3) − 3(y − 1) = 0, x − 3y + 8 = 0.
Рисунок 1 иллюстрирует решение задачи.
правильно посматри