Так как один из внешних углов — острый, значит смежный с ним внутренний угол будет тупой. Это не может быть угол при основании равнобедренного треугольника, так как углы при основании равнобедренного треугольника равны и сумма углов треугольника 180°, значит в треугольнике не может быть два тупых угла.
Проитив большего угла в треугольнике лежит большая сторона, значит, основание треугольника - это сторона, которая в 4 раза больше боковой стороны.
Пусть боковые стороны равны х см, тогда основание 4х см. Периметр равнобедренного треугольника равен 36 см, значит,
Находим длину рёбер ДВ и ДС: 58.5 67.5 84 105 315 ДВ = √(9²+13²) = √(81+169) = √250 ≈ 15.81139 см. ДС = √(9²+15²) = √(81+225) = √306 ≈ 17.49286 см.
Площади основы и грани СДВ находим по формуле Герона: So = √(21(21-13)(21-14)(21-15)) = 84 cm², здесь р = (13+14+15)/2=21 см. S(BCD)= 105 cm². a b c p 14 17.492856 15.811388 23.652122.
24 см
Объяснение:
Так как один из внешних углов — острый, значит смежный с ним внутренний угол будет тупой. Это не может быть угол при основании равнобедренного треугольника, так как углы при основании равнобедренного треугольника равны и сумма углов треугольника 180°, значит в треугольнике не может быть два тупых угла.
Проитив большего угла в треугольнике лежит большая сторона, значит, основание треугольника - это сторона, которая в 4 раза больше боковой стороны.
Пусть боковые стороны равны х см, тогда основание 4х см. Периметр равнобедренного треугольника равен 36 см, значит,
х + х + 4х = 36
6х = 36
х = 6
6 · 4 = 24 см - наибольшая сторона.
АВ = 13 см, ВС = 14 см, АС = 15 см (так как в задании это не оговорено).
Находим площади граней:
S(ADB) = (1/2)*9*13 = 58,5 cm²,
S(ADC) = (1/2)*9*15 = 67,5 cm².
Находим длину рёбер ДВ и ДС: 58.5 67.5 84 105 315 ДВ = √(9²+13²) = √(81+169) = √250 ≈ 15.81139 см.
ДС = √(9²+15²) = √(81+225) = √306 ≈ 17.49286 см.
Площади основы и грани СДВ находим по формуле Герона:
So = √(21(21-13)(21-14)(21-15)) = 84 cm², здесь р = (13+14+15)/2=21 см.
S(BCD)= 105 cm².
a b c p
14 17.492856 15.811388 23.652122.
S = 58,5 + 67,5 + 84 + 105 =315 cм².