Плоскости А1ВD и В1D1C ограничены равными сторонами треугольников, лежащих на противоположных параллельных сторонах параллелепипеда. В1D1|| BD - лежат в плоскости В1D1DB- равны и параллельны. CD1||A1B - лежат в плоскости СВА1D1- равны и параллельны B1C||A1D - лежат в плоскости В1СDA1- равны и параллельны. Стороны этих треугольников попарно пересекаются друг с другом. Если две пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости, то эти плоскости параллельны. Плоскости А1ВD. и СВ1D1 параллельны. ВЕ лежит в плоскости А1ВD, параллельной СВ1D1. Прямая параллельна плоскости, если она не имеет с плоскостью общих точек. ВЕ не имеет общих точек с плоскостью СВ1D1, следовательно, она параллельна ей.
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.
CD1||A1B - лежат в плоскости СВА1D1- равны и параллельны
B1C||A1D - лежат в плоскости В1СDA1- равны и параллельны.
Стороны этих треугольников попарно пересекаются друг с другом.
Если две пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости, то эти плоскости параллельны.
Плоскости А1ВD. и СВ1D1 параллельны.
ВЕ лежит в плоскости А1ВD, параллельной СВ1D1.
Прямая параллельна плоскости, если она не имеет с плоскостью общих точек.
ВЕ не имеет общих точек с плоскостью СВ1D1, следовательно, она параллельна ей.
Не верное утверждение Г.
Объяснение:
А) Прямоугольные треугольники с соответственно равными острыми углами (а даже и с одним, так как второй - прямой) ПОДОБНЫ. Отношение площадей подобных фигур равно квадрату коэффициента подобия (отношению линейных размеров). Значит отношение гипотенуз равно √(2/3). Утверждение верное.
Б) Диагональ трапеции делит ее на два треугольника с одинаковой высотой, следовательно их площади относятся, как их основания, к которым проведена эта высота. Утверждение верное.
В). Медиана треугольника делит треугольник на два треугольника, у которых равны и основания, и высоты. Значит и их площади равны. Утверждение верное.
Г). Периметры равновеликих треугольников в общем случае НЕ равны. (Предыдущий пример с медианой, когда треугольник не равнобедренный - периметры разные). Утверждение НЕ верное.