11. т.к. АВ⊥ВС, т.к. по условию АВ ⊥(АВС), то ∠АСВ=45°, то АВ=СВ, и 2АВ²=(6√2)²⇒АВ²+36
АD=√(ВD²+АВ²)=√(64+36)=100 дважды по Пифагору. ответ в)10
12. ответ в)4
АС=ВС√2, площадь 32=ВС²⇒ВС =4√2, АС=4√2*√2=8, СС₁⊥(АВС), АС₁-проекция АС на (АВС), тогда ∠САА₁=30°, в Δ САА₁: СС₁=8/2=4/см/- катет против угла в 30°, а он и есть расстояние от ВС до плоскости∝
13. Т.к. DА⊥(АВС), АС- проекция DC на (АВС), и ВС⊥АС по условию, то по теореме о трех перпендикулярах DC⊥BC, и значит, расстояние от точки D до прямой ВС равно DС по Пифагору
110°
Объяснение:
1) NH - медиана ΔTNQ ⇒ по свойству медианы TH=HQ.
По условию MT=QK ⇒ МH=HK, т.к. сумма равных отрезков даёт в итоге равные отрезки: MT+TH = QK+HQ. ⇒ NH - медиана ΔMNK.
По условию задачи NH - высота ΔMNK.
Если в треугольнике медиана и высота, проведённые к одной стороне, совпадают, то этот треугольник равнобедренный.⇒ ΔMNK - равнобедренный, что и требовалось доказать.
ΔTNQ также равнобедренный, т.к. NH - медиана и высота.
2) ∠2 + ∠1 − ∠4 = 30°
∠2=∠1, т.к. у равнобедренного ΔTNQ углы при основании равны.
По свойству смежных углов: ∠4 = 180°-∠2 , но ∠2=∠1, поэтому ∠4=180°-∠1
⇒ ∠1+∠1-(180°-∠1)=30°
3*∠1=30°+180°
3*∠1=210°
∠1=70°
По свойству смежных углов: ∠3=180°-∠1=180°-70°=110°
11. т.к. АВ⊥ВС, т.к. по условию АВ ⊥(АВС), то ∠АСВ=45°, то АВ=СВ, и 2АВ²=(6√2)²⇒АВ²+36
АD=√(ВD²+АВ²)=√(64+36)=100 дважды по Пифагору. ответ в)10
12. ответ в)4
АС=ВС√2, площадь 32=ВС²⇒ВС =4√2, АС=4√2*√2=8, СС₁⊥(АВС), АС₁-проекция АС на (АВС), тогда ∠САА₁=30°, в Δ САА₁: СС₁=8/2=4/см/- катет против угла в 30°, а он и есть расстояние от ВС до плоскости∝
14. ВD=AB√2=BB₁√2, ΔВDB₁ - прямоугольный. (BD- проекция диагонли B₁D на (АВС), ctg∠B₁DD=BD/BB₁ =BB₁√2/BB₁=√2
верный ответ б) √2
13. Т.к. DА⊥(АВС), АС- проекция DC на (АВС), и ВС⊥АС по условию, то по теореме о трех перпендикулярах DC⊥BC, и значит, расстояние от точки D до прямой ВС равно DС по Пифагору
DC=√(DA²+AC²), АС²=АВ²-ВС²=(225-81)=144; DC=√(144+25)=169=13/см/
ответ а) 13