Нарисуем трапецию АВСD. Проведем ее среднюю линию КМ КМ=(АD+ВС):2=10 Средняя линия разделила исходную трапецию на две равнобедренные с равными высотами. Соединим концы стороны СD с серединой К боковой стороны АВ. Трапеция КВСМ - равнобедренная. Высота равнобедренной трапеции делит ее большее основание на два отрезка, больший из которых равен полусумме оснований. КО=(ВС+КМ):2=9 Средняя линия трапеции АВСD разделила ее высоту на два равных отрезка. СО=КН=7:2=3,5 Из прямоугольного треугольника КСО по т.Пифагора найдем СК - один из отрезков, соединяющих концы боковой стороны СD трапеции АВСD с серединой К другой боковой стороны АВ. СК=√ (СО²+ОК²)=√(12,25+81)=√93,25=0,5√ 373 Второй отрезок DК из треугольника КНD по т.Пифагора: DК=√(НДD²+КН²)=√(121+12,25)=0,5√533
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²
Проведем ее среднюю линию КМ
КМ=(АD+ВС):2=10
Средняя линия разделила исходную трапецию на две равнобедренные с равными высотами.
Соединим концы стороны СD с серединой К боковой стороны АВ.
Трапеция КВСМ - равнобедренная.
Высота равнобедренной трапеции делит ее большее основание на два отрезка, больший из которых равен полусумме оснований.
КО=(ВС+КМ):2=9
Средняя линия трапеции АВСD разделила ее высоту на два равных отрезка. СО=КН=7:2=3,5
Из прямоугольного треугольника КСО по т.Пифагора найдем СК - один из отрезков, соединяющих концы боковой стороны СD трапеции АВСD с серединой К другой боковой стороны АВ.
СК=√ (СО²+ОК²)=√(12,25+81)=√93,25=0,5√ 373
Второй отрезок DК из треугольника КНD по т.Пифагора:
DК=√(НДD²+КН²)=√(121+12,25)=0,5√533