Обозначим трапецию АВСD. ВС║АD, АВ=15 см, СD=17 см, ВC⊥АB
Трапеция прямоугольная, ⇒ высота CH трапеции параллельна и равна меньшей боковой стороне. СН=АВ=15 см. Отношение сторон треугольника СHD из Пифагоровых троек (8:15:17), ⇒ НD=8 см ( проверьте по т.Пифагора) Т.к.MN средняя линия трапеции, отрезок КN - средняя линия треугольника СНD, поэтому по свойству средней линии КN=HD:2=8:2=4 см.
ответ: средняя линия трапеции =✓10;
S=10√10
Объяснение: вычислим средние точки боковых сторон АС и ВД по формуле:
(х1+х2)÷2; (у1+у2)÷2:
Ср.точка АСх= (-6+4)÷2= -2÷2= -1
СР.точка АСу=(3+3)÷2=6÷2=3
Средние Точки АС =(- 1; 3)
СР.точка ВДх=(2-6)÷2= -4÷2= - 2
СР.точка ВДу=(3-3)÷2=0÷2=0
Средняя точка ВД=( - 2; 0)
Теперь найдём длину средней линии трапеции, зная её координаты по формуле: (х1-х2)²+(у1-у2)²
Ср.линия=
=( -1+2)²+(3-0)²=1²+3²=√(1+9)=√10
Средняя линия=√10см
Теперь найдём длину стороны АС, которая является ещё и высотой трапеции по второй формуле:
АС= (-6-4)²+(3-3)²= (-10)²+0=√100=10
Сторона АС=10см. Теперь найдём площадь трапеции, зная среднюю линию и высоту по формуле:
S= средняя линия× высоту АС:
S=10√10см²
ответ: 2 см и 10 см
Объяснение:
Обозначим трапецию АВСD. ВС║АD, АВ=15 см, СD=17 см, ВC⊥АB
Трапеция прямоугольная, ⇒ высота CH трапеции параллельна и равна меньшей боковой стороне. СН=АВ=15 см. Отношение сторон треугольника СHD из Пифагоровых троек (8:15:17), ⇒ НD=8 см ( проверьте по т.Пифагора) Т.к.MN средняя линия трапеции, отрезок КN - средняя линия треугольника СНD, поэтому по свойству средней линии КN=HD:2=8:2=4 см.
АВСН - прямоугольник ( что легко доказывается). ⇒
BC=АН=MN-KN=6-4=2 см и АD=AH+HD=2+8=10 см.