Знайдіть невідомі сторони прямокутного трикутника ABC (С=90°), якщо: 1) АС=3см, cos A = 1/4. 2) BC=5см, sin A = 2/3. 3) AC=8см, tg B = 3. 4) AB=13см, cos B = 4/5. 5) AC=6см, cos B = 1/3. 6) AB=8см, tg B = 6/7.
1. Поскольку трапеция равнобедренная, то два угла при основании равны 135 градусам. Зная, что сумма углов трапеции равна 360 градусам (по вертикальным углам, образованным параллельными прямыми), найдем сумма двух других углов:
360 - 2 * 135 = 90
Соответственно, каждый из двух углов при бОльшем основании равен 45 градусам.
2. Опустим из одной вершины трапеции высоту. (Не для записи: например, трапеция ABCD, опустили высоту BE. А вообще, так и рисуй))). Рассмотрим полученный треугольник АВЕ. Он прямоугольный, а угол ВАЕ равен 45 градусам (см. п.1). Угол АВЕ тоже будет равен 45 градусам (180 - 90 - 45), а значит, треугольник АВЕ - равнобедренный.
Зная гипотенузу и то, что катеты равны, воспользуемся теоремой Пифагора:
25 = 2 ВЕ^{2}
ВЕ^{2} = 25 / 2
ВЕ = АЕ = 5 / \sqrt{2}
3. Теперь, зная высоту трапеции, можем вычислить ее площадь по формуле
первая точка S будет вершиной пирамиды с боковым ребром SA=40
другая точка Q будет вершиной меньшей пирамиды с боковым ребром QA=25 и QS=25
рассмотрим прямоугольный треуг. SAO, Q лежит на OS
AO=половина диагонали квадрата (основания пирамиды)=a/корень(2), где a - сторона квадрата
из OAQ по т.Пифагора 25*25 = a^2/2 + OQ^2
из OAS по т.Пифагора 40*40 = a^2/2 + (OQ+25)^2 = a^2/2 + OQ^2 + 50*OQ + 25*25 =
25*25 + 50*OQ + 25*25 = 2*25*25 + 50*OQ
50*OQ = 40*40-2*25*25 = 350
OQ = 7
25*25 = a^2/2 + 7*7
a^2/2 = 576
a^2 = 1152
1. Поскольку трапеция равнобедренная, то два угла при основании равны 135 градусам. Зная, что сумма углов трапеции равна 360 градусам (по вертикальным углам, образованным параллельными прямыми), найдем сумма двух других углов:
360 - 2 * 135 = 90
Соответственно, каждый из двух углов при бОльшем основании равен 45 градусам.
2. Опустим из одной вершины трапеции высоту. (Не для записи: например, трапеция ABCD, опустили высоту BE. А вообще, так и рисуй))). Рассмотрим полученный треугольник АВЕ. Он прямоугольный, а угол ВАЕ равен 45 градусам (см. п.1). Угол АВЕ тоже будет равен 45 градусам (180 - 90 - 45), а значит, треугольник АВЕ - равнобедренный.
Зная гипотенузу и то, что катеты равны, воспользуемся теоремой Пифагора:
25 = 2 ВЕ^{2}
ВЕ^{2} = 25 / 2
ВЕ = АЕ = 5 / \sqrt{2}
3. Теперь, зная высоту трапеции, можем вычислить ее площадь по формуле
S = m * h, где m - средняя линия, а h - высота.
S = 8 * 5 / \sqrt{2} = 40 / \sqrt{2} кв.см