Центр шара лежит в точке, равноудалённой от сторон треугольника, образуя вместе с вершинами треугольника треугольную пирамиду с равными апофемами. апофемы равны, значит основание высоты пирамиды лежит в центре вписанной в основание пирамиды окружности. площадь основания можно вычислить по формуле герона: s=√(p(p-a)(p-b)(p- где р=(a+b+c)/2. подставив числовые значения a=13, b=14 и с=15 получим s=84 см. радиус вписанной окружности: r=s/p=2s/(a+b+c). r=2·84/(13+14+15)=4 см. высота пирамиды, проведённая к данному треугольнику - это расстояние от центра шара до треугольника. в прямоугольном треугольнике, образованном высотой пирамиды, апофемой и найденным радиусом, высота по теореме пифагора равна: h=√(l²-r²), где l- апофема пирамиды (равна радиусу шара). h=√(5²-4²)=3 см - это ответ.
Объяснение:
Дано: Правильная шестиугольная пирамида SABCDEF.
SO=15 см - высота
ВА=20 см - сторона основания
Найти:
Боковое ребро AS; апофему SH, площадь боковой поверхности.
Правильная шестиугольная пирамида имеет в основании правильный шестиугольник. Боковые грани - равнобедренные треугольники.
1. Рассмотрим ΔВОА - равносторонний (свойство правильного шестиугольника)
⇒ОА=20 см.
2. Рассмотрим ΔASO - прямоугольный (SO - высота)
По т. Пифагора:
3. Рассмотрим ΔASB - равнобедренный.
⇒SH - высота, медиана.
⇒ВН=AH=10 см
4. Рассмотрим ΔHSA - прямоугольный.
По т. Пифагора:
5. Площадь боковой поверхности равна площади 6 граней.
Найдем сначала площадь одной грани, а затем шести: