Нарисуй так, чтобы ab была наверху, так проще. 1) площадь abcd = h*ab, где h - высота из точки E на cd 2) площадь ced постоянна, ты меняешь местоположение E, но не происходит ничего, основание тоже, высота та же, а площадь треугольника h * cd / 2, а значит, от местонахождения E не зависит ничего. 3) так как S ced = 1/2 * Sabcd, просто сравни h*ab и h*ab/2, площадь треугольника в 2 раза меньше. 4) а значит сумма оставшихся треугольников будет равна Sabcd - Sced = 1/2 * h * ab, вот и всё за внимание :D
Рассмотрим параллелограмм АВСД (см. рисунок) стороны которого: АВ=32 см, ВС=40 см. Из угла АВС проведем перпендикуляр ВЕ и расстояние между вершинам тупых углов ВД Рассмотрим треугольник АВЕ: Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи) По теореме Пифагора найдем второй катет (высоту): ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см. Теперь рассмотрим треугольник BДE: ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов По теореме Пифагора найдем ВД: ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см. ответ: расстояние между вершинами тупых углов равно 8√21 см
1) площадь abcd = h*ab, где h - высота из точки E на cd
2) площадь ced постоянна, ты меняешь местоположение E, но не происходит ничего, основание тоже, высота та же, а площадь треугольника h * cd / 2, а значит, от местонахождения E не зависит ничего.
3) так как S ced = 1/2 * Sabcd, просто сравни h*ab и h*ab/2, площадь треугольника в 2 раза меньше.
4) а значит сумма оставшихся треугольников будет равна Sabcd - Sced = 1/2 * h * ab, вот и всё за внимание :D
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см