1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см.
2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)