y=x^2-4x+8, найдем у(2)=2^2-4*2+8=4, y(4)=4^2-4*4+8=8, т.е. хорда проходит через точки (2;4), (4;8), уравнение прямой у=кх+в, подставим эти точки в ур-е и решим систему: 4=2к+в, 8=4к+в, получим к=2, в=0, значит уравнение хорды: у=2х, если касательная параллельна хорде, то ее угловые коэффициенты равны, к=2 и y'=k=2. y'=2x-4, приравняем,
2х-4=2, 2х=6, х=3- это абсцисса точки касания, ур-е касательной
у=f(x0)+f'(x0)*(x-x0), f(3)=9-12+8=5, f'(3)=2 и получаем: у=5+2(х-3),
1. Верно утверждение под буквой В: прямая АВ лежит в плоскости α.
Точки А и В принадлежат плоскости α, значит все точки прямой АВ принадлежат плоскости α (смотри рис.1).
2. Верны утверждения под буквами А и Г.
А: через прямую а и точку А всегда можно провести плоскость.
Если точка А не лежит на прямой а, то можно провести только одну плоскость (см. рис. 2). Если точка А принадлежит прямой а, то плоскостей можно провести бесконечное множество (рис. 3). В любом случае плоскость можно провести.
Г: если через прямую а и точку А можно провести две разные плоскости, то точка А лежит на прямой а.
Если бы точка А не принадлежала прямой а, то через эту точку и прямую можно было бы провести только одну плоскость (см. рис. 2).
Поскольку плоскостей можно провести две, то точка А принадлежит прямой а. В этом случае можно провести бесконечное множество плоскостей (см. рис. 3).
Объяснение:
y=x^2-4x+8, найдем у(2)=2^2-4*2+8=4, y(4)=4^2-4*4+8=8, т.е. хорда проходит через точки (2;4), (4;8), уравнение прямой у=кх+в, подставим эти точки в ур-е и решим систему: 4=2к+в, 8=4к+в, получим к=2, в=0, значит уравнение хорды: у=2х, если касательная параллельна хорде, то ее угловые коэффициенты равны, к=2 и y'=k=2. y'=2x-4, приравняем,
2х-4=2, 2х=6, х=3- это абсцисса точки касания, ур-е касательной
у=f(x0)+f'(x0)*(x-x0), f(3)=9-12+8=5, f'(3)=2 и получаем: у=5+2(х-3),
у=2х-1
1. Верно утверждение под буквой В: прямая АВ лежит в плоскости α.
Точки А и В принадлежат плоскости α, значит все точки прямой АВ принадлежат плоскости α (смотри рис.1).
2. Верны утверждения под буквами А и Г.
А: через прямую а и точку А всегда можно провести плоскость.
Если точка А не лежит на прямой а, то можно провести только одну плоскость (см. рис. 2). Если точка А принадлежит прямой а, то плоскостей можно провести бесконечное множество (рис. 3). В любом случае плоскость можно провести.
Г: если через прямую а и точку А можно провести две разные плоскости, то точка А лежит на прямой а.
Если бы точка А не принадлежала прямой а, то через эту точку и прямую можно было бы провести только одну плоскость (см. рис. 2).
Поскольку плоскостей можно провести две, то точка А принадлежит прямой а. В этом случае можно провести бесконечное множество плоскостей (см. рис. 3).